From: Subject: Regional Problem Set Date: Thu, 26 Jul 2007 03:19:22 +0500 MIME-Version: 1.0 Content-Type: multipart/related; type="text/html"; boundary="----=_NextPart_000_0034_01C7CF33.C2E07480" X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2900.2180 This is a multi-part message in MIME format. ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: text/html; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/RegionalProblems.html Regional Problem Set

ACM International Collegiate Programming=20 Contest
Southwestern European Regional Contest
ETH Zurich, = Switzerland,=20 December 9, 1995


Problem Set

Contents

Rules=20 and Advice

Problem=20 A: Intersection

Problem=20 B: Synchronous Design

Problem=20 C: Graph Coloring

Problem=20 D: Triangle

Problem=20 E: Anagram

Problem=20 F: Spreadsheet

Problem=20 G: Cube

Problem=20 H: Peter's Calculator

Problem=20 J: Partial Differential Equations

Sponsored by Microsoft
Supported by Union Bank = of=20 Switzerland


Some Rules and Advice

All questions require you to read the test data from a single input = file and=20 to write the results to a single output file. The names of both files = are given=20 in the header of the problem. Your are not allowed to read or write any = other=20 files than the specified ones. Standard input and output are also = considered=20 files.

Output must correspond exactly to the provided sample = output,=20 including spelling and spacing.

All lines (including the last = one)=20 should be terminated with a new-line character, and no whitespace should = appear=20 at the end of a line unless explicitly specified. Tabs should never be = used.=20

All programs will be re-compiled prior to testing with the = judges' data.=20 Non-standard libraries may not be used in your solutions. C programs may = not=20 include any files except: ctype.h, math.h, = stdio.h,=20 stdlib.h, string.h, and strings.h. Pascal = programs=20 may use the extended Reset, Rewrite and the = Close=20 statement, which are not part of the ISO Pascal standard.

After = analyzing=20 a program, the judges will send one of the following messages:

Programming style is not considered in this contest. You are free to = code in=20 whatever style you prefer.

The CPU time limit for all problems = is 3=20 minutes except when specified otherwise.

All questions regarding = the=20 contest material should be submitted to the judges by filling in a=20 clarification request form. You can ask the runners in the = room=20 for any non-contest related matters or for getting your printer output. = The=20 helpers will not answer any questions regarding the contest material.=20

Judges' decisions are to be considered final. No cheating will = be=20 tolerated.

Success!


Problem A: Intersection

Source file: intersection.c / intersection.p
Input file:=20 intersection.in
Output file: intersection.out

You are to write = a=20 program that has to decide whether a given line segment intersects a = given=20 rectangle.

An example:

line: start point: (4,9)
end point: (11,2)
rectangle: left-top: = (1,5)
right-bottom: (7,1)



Figure 1: = Line segment=20 does not intersect rectangle

The line is said to intersect = the=20 rectangle if the line and the rectangle have at least one point in = common. The=20 rectangle consists of four straight lines and the area in between. = Although all=20 input values are integer numbers, valid intersection points do not have = to lay=20 on the integer grid.

Input

The input consists of n test cases. The first line of the = input file=20 contains the number n. Each following line contains one test case = of the=20 format: xstart ystart xend yend xleft ytop xright ybottom where=20 (xstart, ystart) is the start and (xend, = yend) the=20 end point of the line and (xleft, ytop) the top left and=20 (xright, ybottom) the bottom right corner of the = rectangle. The=20 eight numbers are separated by a blank. The terms top left and = bottom=20 right do not imply any ordering of coordinates.

Output

For each test case in the input file, the output file should contain = a line=20 consisting either of the letter "T" if the line segment intersects the = rectangle=20 or the letter "F" if the line segment does not intersect the rectangle. =

Example

Input

1
4 9 11 2 1 5 7 1

Output

F


Problem B: Synchronous Design

Source file: synchronous.c / synchronous.p
Input file:=20 synchronous.in
Output file: synchronous.out

The designers of = digital=20 integrated circuits (IC) are very concerned about the correctness of = their=20 designs because, unlike software, ICs cannot be easily tested. Real = tests are=20 not possible until the design has been finalized and the IC has been=20 produced.

To simulate the behavior of a digital IC and to more or = less=20 guarantee that the final chip will work, all of today's digital ICs are = based on=20 a synchronous design.



Figure 1: = The critical=20 path (dashed line) takes 43ns to settle

In a synchronous = design, an=20 external clock signal triggers the IC to go from a well defined and = stable state=20 to the next one. On the active edge of the clock, all input and output = signals=20 and all internal nodes are stable in either the high or low state. = Between two=20 consecutive edges of the clock, the signals and nodes are allowed to = change and=20 may take any intermediate state. The behavior of a synchronous network = is=20 predictable and will not fail due to hazards or glitches introduced by=20 irregularities of the real circuit.

To analyze whether an IC has = a=20 synchronous design, we distinguish between synchronous and=20 asynchronous nodes. Flip flops are synchronous nodes. On the = active edge=20 of the clock, the output of the flip flop changes to the state of the = input and=20 holds that state throughout the next clock cycle. Synchronous nodes are=20 connected to the clock signal.

Simple gates like ANDs or ORs are=20 asynchronous nodes. Their output changes - with a short delay - whenever = one of=20 their inputs changes. During that transition phase, the output can even = go into=20 some undefined or intermediate state.

For simplicity, we assume = that all=20 inputs of the circuits are directly connected to the output of a = synchronous=20 node outside the circuit and that all outputs of the circuit are = directly=20 connected to the input of a synchronous node outside the circuit. =

For an=20 IC to have a synchronous design, mainly two requirements must be met: =

Figure 3 shows a circuit with a synchronous design. It does not = contain=20 cycles composed of asynchronous nodes and the longest path between two=20 synchronous nodes is shorter than the clock period of 30ns.



Figure 2: = The design=20 contains a cycle (dashed line)



Figure 3: A = synchronous=20 design

Your are to write a program that decides for a given = IC=20 whether it has a synchronous design or not. You are given a network of=20 synchronous and asynchronous nodes, a delay for each node, some inputs = and=20 outputs and the clock period.

You may safely assume that

Input

The input file contains several circuits. The first line gives the = number of=20 circuits in the file.

For each circuit in the file, the first = line=20 contains the clock period for the circuit, given as an integer number in = nanoseconds. The next line gives the number of nodes. The following = lines each=20 contain a node, described by a letter and a integer number. The letter = is 'i'=20 for an input, 'o' for an output, 'a' for an asynchronous node and 's' = for a=20 synchronous node. The number gives the delay introduced by the node as = an=20 integer number in nanoseconds (only meaningful for an asynchronous = node). Nodes=20 are implicitly numbered, starting at zero.

After the nodes, the = number of=20 connections for the circuit follows. Each following line contains a pair = of=20 integer numbers denoting a connection between the output and the input = of two=20 nodes. The connection links an output of the node given by the first = number and=20 an input of the node given by the second number.

The clock signal = is not=20 given in the input file. We assume that all synchronous nodes are = properly=20 connected to the clock signal.

Output

For each circuit in the input file, your output file should contain a = line=20 with one of the following messages:

Example

Input

1
30
10
i 0
i 0
i 0
i 0
o 0
o 0
a 9
a 11
a 8
s 0
9
0 8
1 7
2 6
2 6
6 7
7 8
8 4
7 9
9 5

Output

Synchronous design. Maximum delay: 28


Problem C: Graph Coloring

Source file: coloring.c / coloring.p
Input file: = coloring.in
Output=20 file: coloring.out

You are to write a program that tries to find = an=20 optimal coloring for a given graph. Colors are applied to the nodes of = the graph=20 and the only available colors are black and white. The coloring of the = graph is=20 called optimal if a maximum of nodes is black. The coloring is = restricted by the=20 rule that no two connected nodes may be black.



Figure 1: An = optimal graph=20 with three black nodes

Input

The graph is given as a set of nodes denoted by numbers 1...n, = n <=3D 100, and a set of undirected edges denoted by = pairs of=20 node numbers (n1, n2), n1 !=3D n2. The = input file=20 contains m graphs. The number m is given on the first = line. The=20 first line of each graph contains n and k, the number of = nodes and=20 the number of edges, respectively. The following k lines contain = the=20 edges given by a pair of node numbers, which are separated by a space. =

Output

The output should consists of 2m lines, two lines for each = graph found=20 in the input file. The first line of should contain the maximum number = of nodes=20 that can be colored black in the graph. The second line should contain = one=20 possible optimal coloring. It is given by the list of black nodes, = separated by=20 a blank.

Example

Input

1
6 8
1 2
1 3
2 4
2 5
3 4
3 6
4 6
5 6

Output

3
1 4 5


Problem D: Triangle

Source file: triangle.c / triangle.p
Input file: = triangle.in
Output=20 file: triangle.out

A triangle is a basic shape of planar = geometry. It=20 consists of three straight lines and three angles in between. Figure 1 = shows how=20 the sides and angles are usually labeled.



Figure 1:=20 Triangle

A look into a book about geometry shows that many = formulas=20 for triangles exist:









The values of a, b, c, alpha, = beta, and=20 gamma form a set of six parameters that fully define a triangle. = If a=20 large enough subset of these parameters is given, the missing ones can = be=20 calculated by using the formulas above.

You are to write a = program that=20 calculates the missing parameters for a given subset of the six = parameters of a=20 triangle. For some sets of parameters, it is not possible to calculate = the=20 triangle because either too few is known about the triangle or the = parameters=20 would lead to an invalid triangle. The sides of a valid triangle are = greater=20 than 0 and the angles are greater than 0 and less than pi. Your program = should=20 detect this case and output: "Invalid input." The same phrase = should be=20 output if more than the minimal set needed to compute the triangle is = given but=20 the parameters conflict with each other, e.g. all three angles are given = but=20 their sum is greater than pi.

Other sets of parameters can lead = to more=20 than one but still a finite number of valid solutions for the triangle. = In such=20 a case, your program should output: "More than one = solution."

In=20 all other cases, your program should compute the missing parameters and = output=20 all six parameters.

Input

The first line of the input file contains a number indicating the = number of=20 parameter sets to follow. Each following line consists of six numbers, = separated=20 by a single blank character. The numbers are the values for the = parameters=20 a, alpha, b, beta, c, and = gamma=20 respectively. The parameters are labeled as shown in figure 1. A value = of -1=20 indicates that the corresponding parameter is undefined and has to be=20 calculated. All floating-point numbers include at least eight = significant=20 digits.

Output

Your program should output a line for each set of parameters found in = the=20 input file. If a unique solution for a valid triangle can be found for = the given=20 parameters, your program should output the six parameters a,=20 alpha, b, beta, c, gamma, separated = by a=20 blank character. Otherwise the line should contain the phrase "More = than one=20 solution." or "Invalid input." as explained = above.

The=20 numbers in the output files should include at least eight significant = digits.=20 Your calculations should be precise enough to get the six most = significant=20 digits correct.

Example

Input

3
62.72048064 2.26853639 -1.00000000 0.56794657 -1.00000000 -1.00000000
15.69326944 0.24714213 -1.00000000 1.80433105 66.04067877 -1.00000000
72.83685175 1.04409241 -1.00000000 -1.00000000 -1.00000000 =
-1.00000000

Output

62.72048064 2.26853639 44.02668698 0.56794657 =
24.58722491 0.30510970
Invalid input.
Invalid input.


Problem E: Anagram

Source file: anagram.c / anagram.p
Input file: = anagram.in
Output file:=20 anagram.out

You are to write a program that has to generate all = possible=20 words from a given set of letters.

Example

Given the word "abc", your program should - by exploring all = different=20 combination of the three letters - output the words "abc", "acb", "bac", = "bca",=20 "cab" and "cba".

In the word taken from the input file, some = letters may=20 appear more than once. For a given word, your program should not produce = the=20 same word more than once, and the words should be output in = alphabetically=20 ascending order.

Input

The input file consists of several words. The first line contains a = number=20 giving the number of words to follow. Each following line contains one = word. A=20 word consists of uppercase or lowercase letters from A to Z. Uppercase = and=20 lowercase letters are to be considered different.

Output

For each word in the input file, the output file should contain all = different=20 words that can be generated with the letters of the given word. The = words=20 generated from the same input word should be output in alphabetically = ascending=20 order.

Example

Input

2
abc
acba

Output

abc
acb
bac
bca
cab
cba
aabc
aacb
abac
abca
acab
acba
baac
baca
bcaa
caab
caba
cbaa

Hint

The number of possible combinations raises very quickly with the = number of=20 given letters. Make sure you do not use long words for testing your = program=20 because the output file could become very big, waste a lot of space on = the disk=20 and degrade the performance of the network.


Problem F: Spreadsheet

Source file: spreadsheet.c / spreadsheet.p
Input file:=20 spreadsheet.in
Output file: spreadsheet.out

In 1979, Dan = Bricklin and=20 Bob Frankston wrote VisiCalc, the first spreadsheet application. It = became a=20 huge success and, at that time, was the killer application for the Apple = II=20 computers. Today, spreadsheets are found on most desktop = computers.

The=20 idea behind spreadsheets is very simple, though powerful. A spreadsheet = consists=20 of a table where each cell contains either a number or a formula. A = formula can=20 compute an expression that depends on the values of other cells. Text = and=20 graphics can be added for presentation purposes.

You are to write = a very=20 simple spreadsheet application. Your program should accept several = spreadsheets.=20 Each cell of the spreadsheet contains either a numeric value (integers = only) or=20 a formula, which only support sums. After having computed the values of = all=20 formulas, your program should output the resulting spreadsheet where all = formulas have been replaced by their value.

 A1    B1     C1    =
 D1     E1     F1     ...   =20
 A2    B2     C2     D2     E2     F2     ...   =20
 A3    B3     C3     D3     E3     F3     ...   =20
 A4    B4     C4     D4     E4     F4     ...   =20
 A5    B5     C5     D5     E5     F5     ...   =20
 A6    B6     C6     D6     E6     F6     ...   =20
 ...   ...    ...    ...    ...    ...    ...    

Figure 1: Naming of the top left cells

Input

The first line of the input file contains the number of spreadsheets = to=20 follow. A spreadsheet starts with a line consisting of two integer = numbers,=20 separated by a space, giving the number of columns and rows. The = following lines=20 of the spreadsheet each contain a row. A row consists of the cells of = that row,=20 separated by a single space.

A cell consists either of a numeric = integer=20 value or of a formula. A formula starts with an equal sign (=3D). After = that, one=20 or more cell names follow, separated by plus signs (+). The value of = such a=20 formula is the sum of all values found in the referenced cells. These = cells may=20 again contain a formula. There are no spaces within a = formula.

You may=20 safely assume that there are no cyclic dependencies between cells. So = each=20 spreadsheet can be fully computed.

The name of a cell consists of = one to=20 three letters for the column followed by a number between 1 and 999 = (including)=20 for the row. The letters for the column form the following series: A, B, = C, ...,=20 Z, AA, AB, AC, ..., AZ, BA, ..., BZ, CA, ... ZZ, AAA, AAB, AAC, ... AAZ, = ABA,=20 ..., ABZ, ACA, ..., ZZZ. These letters correspond to the number from 1 = to 18278.=20 The top left cell has the name A1. See figure 1.

Output

The output of your program should have the same format as the input, = except=20 that the number of spreadsheets and the number of columns and rows are = not=20 repeated. Furthermore, all formulas should be replaced by their value. =

Example

Input

1
4 3
10 34 37 =3DA1+B1+C1
40 17 34 =3DA2+B2+C2
=3DA1+A2 =3DB1+B2 =3DC1+C2 =3DD1+D2

Output

10 34 37 81
40 17 34 91
50 51 71 172


Problem G: Cube

Source file: cube.c / cube.p
Input file: None
Output = file:=20 cube.out

There was once a 3 by 3 by 3 cube built of 27 smaller = cubes. It=20 has fallen apart into seven pieces:



Figure 1: = The seven pieces=20 that once formed a cube

The seven pieces can be assembled in = many=20 ways to again form the cube. Figure 2 shows one of these possibilities. = The=20 first square stands for the front plane, the next one for the middle = plane and=20 the last one for the back plane of the cube. The letters in the cells = stand for=20 the name of piece filling out the corresponding space in the cube. The = name of=20 the seven pieces can be found in figure 1.

a   d   c      d   d =
  g      d   g   g  =20
a   c   c      b   f   g      b   f   e  =20
a   a   c      f   f   e      b   e   e  =20


a   a   b      f   f   e      f   e   e  =20
a   b   b      g   f   c      g   g   e  =20
a   d   c      d   d   c      d   g   c   

Figure 2: Two possibilities of assembling the cube

You = are to=20 write a program that outputs all possibilities of assembling the cube = but=20 suppress solutions that are mere rotations of another solution. The time = limit=20 for this problem is 15 minutes!

Input

No input is needed.

Output

For each solution found, your program should output a line containing = the=20 solution as a string. The string is a linearized form of the cube. Each = letter=20 stands for the piece filling out the corresponding space in the cube. It = is=20 linearized as follows:

The solutions in figure 2 would be represented like this: =

adcaccaacddgbfgffedggbfebee
aababbadcffegfcddcfeeggedgc

It is very important that your program uses the naming convention = given in=20 figure 1 and linearizes the cube as explained above.



Figure 3: = Positions of the=20 cells in the string

Figure 3 again shows how the cells of = the cube=20 are linearized.

Example

The output of your program could start like this: =

aababbadcggeffcddcgeegfedfc
aababbadceffgdcgdceefedfggc
aababbadcffegfcddcfeeggedgc
...

Hint

Piece a is the only part that, by rotation and translation, = cannot be=20 transformed into itself. In order to avoid solutions that are mere = rotations of=20 an already found solution, you may restrict transformations of piece = a to=20 translations.


Problem H: Peter's Calculator

Source file: calculator.c / calculator.p
Input file:=20 calculator.in
Output file: calculator.out

Unfortunately, = Peter's=20 Calculator broke down last week. Now Peter is left with his computer, = which has=20 no calculator application, and paper and pencil, which is too tiresome = for an=20 engineer. As one of Peter's friends, you are asked to write him a = calculator=20 application. After talking to him, you figure out the following:

The input strictly adheres to the following syntax (given in EBNF): =

file =3D line { line } <EOF>.
line =3D [ assignment | print | reset ] <CR>.
assignment =3D var ":=3D" expression.
print =3D "PRINT" var.
reset =3D "RESET".
expression =3D term { addop term }.
term =3D factor { mulop factor }.
factor =3D "(" expression ")" | var | number.
addop =3D "+" | "-".
mulop =3D "*". 

In the Extended Backus-Naur Formalism (EBNF), A =3D B C = declares that=20 the grammatical construct A consists of a B followed = by a=20 C. A =3D B | C means that A consists of a = B=20 or, alternatively, of a C. A =3D [ B ] defines = construct=20 A to be either a B or nothing and A =3D { B } = tells you=20 that A consists of the concatenation of any number of = Bs=20 (including none).

The production var stands for the name = of a=20 variable, which starts with a letter followed by up to 49 letters or = digits.=20 Letters may be uppercase or lowercase. The production number = stands for=20 a integer number. The precise syntax for these productions are given = below. The=20 case of letters is important for both variables and statements. =

var =3D letter { letter | digit }.
number =3D [ "-" ] digit { digit }.
letter =3D "A" | "B" | ... | "Z" | "a" | "b" | ... | "z".
digit =3D "0" | "1" | ... | "8" | "9".

Between the parts of a grammatical construct but not within the names = of=20 variables or integer numbers, any number of spaces may appear. = <EOF>=20 stands for the end of the input file and <CR> stands for the = new-line=20 character. All lines in the input file are shorter than 200=20 characters.

The value of a variable is said to be undefined:

Your are to write a program that implements Peter's calculator. It = should=20 store all variable definitions and for each "PRINT" statement evaluate = the=20 specified variable based on the latest variable definitions. If your = program=20 encounters a "RESET" statement, it should delete all stored variables so = that=20 all variables become undefined.

Input

The input file contains calculations adhering to the syntax given = above. Each=20 line contains either an assignment to a variable, a "PRINT" statement, a = "RESET"=20 statement or nothing.

Output

For each "PRINT" statement found in the input file, your program = should=20 output a line containing the numerical value of the specified variable = or the=20 word "UNDEF" if the variable is undefined.

Example

Input

a :=3D b + c
b :=3D 3
c :=3D 5
PRINT d
PRINT a
b :=3D 8
PRINT a
RESET
PRINT a

Output

UNDEF
8
13
UNDEF


Problem J: Partial differential equations =

Source file: equation.c / equation.p
Input file: = equation.in
Output=20 file: equation.out

In engineering sciences, partial differential=20 equations play an important and central role. For example, the = temperature of a=20 metal plate can be expressed as a partial differential equation if the=20 temperature on the boundaries is known. This is called a boundary value=20 problem.

Usually, it is not easy to solve these problems. = Analytical=20 solutions exist only in very special cases. But there are some more or = less=20 "good" numerical ways to solve boundary value problems.

We now = will look=20 at one method which works with finite difference approximations for the=20 derivatives of a function. For this approach, we do not look at an = analytical=20 function u(x) but we are only interested in the values of = u=20 at a finite set of discrete points xi: = ui =3D=20 u(xi). The distance between two adjacent points,=20 xi and xi+1, is constant: h = =3D=20 xi+1 - xi (cf. figure 1). =



Figure 1: = u(x) at some=20 discrete points xi

The finite difference = approximation of=20 a first derivative of the function u(x) is

(1)

The second derivative is approximated by

(2)

This approximation works with 2-dimensional functions = u(x,=20 y) as well. For simplicity we only work on square problems, i.e.=20 (x, y) is element of [0,1] x [0,1]. Again, the area of the = function is discretized in a similar way: xi+1 -=20 xi =3D yi+1 - yi = =3D h=20 =3D 1 / n, for some integer n >=3D 2. We only look at = the values of=20 u(x, y) at the discrete points Pk = =3D=20 (xi, yj): = ui,j =3D=20 u(Pk). With this discretization, we have a = function=20 ui,j as shown in figure 2:



Figure 2: = Function=20 ui,j in the discretization area

On the boundary,=20 u(xi, yj) is given by 4 known = functions:

(3)

The points Pk cover the inner points of the = discretization=20 area, i.e. the area without the boundary. They are numbered from left to = right=20 and from top to bottom like English text.

What we now want to do = is to=20 solve the poisson-equation in the area [0,1] x [0,1]:

(4)

with the above boundary conditions. f(x, y) is a = given=20 2-dimensional function. With equation (2) and the above discretization, = the=20 poisson-equation can be approximated at

, (5)

where fi,j is the function = f(x,=20 y), evaluated at the discrete points (xi,=20 yj).

Formula (5) can be written in a more = readable=20 form, depending on the position of the discrete points:

(6a)

A similar equation, which we will use as an example below, is: =

(6b)

We call the 3x3 matrix on the left hand side v and the 3x3 = matrix on=20 the right hand side g. Now, equation (6b) can be formulated in = every=20 point of the discrete area of figure 2:

(7)

(7) is a linear equation system for the values of u(x,=20 y) at the points P1, P2,=20 P3 and P4.

By rearranging and = adding=20 the terms on each line, the linear equation system can be formulated as: =

az =3D b (8)

where a is a 4x4 matrix and b is a vector with 4 elements. = Vector=20 z represents the unknown values of u(x, y) = at the=20 points P1, P2, P3 = and=20 P4.

You are to write a program that creates = the linear=20 equation system (7) in the form (8) for any two matrices v and = g=20 (6). As input, the two matrices v and g and the functions=20 b1, b2, b3,=20 b4, and f are given. Also, a parameter n = is=20 given as the number of discretization intervals. Thus, h =3D 1/n. As the = result,=20 your program should calculate the matrix a and the vector = b. For=20 this more general case, there are (n-1)2 inner points = and=20 a and b must be sized accordingly.

Input

The input file consists of m tests. The number m is = given in=20 the first line of the file. The first line of each test contains the = number=20 n which gives the number of discretizations intervals as defined = above.=20 You may assume that 2 <=3D n <=3D 30. Then the 3x3 matrices = v and=20 g follow. The following four lines contain the functions=20 b1, b2, b3 and=20 b4, each given as a vector of order n+1, = containing the=20 values for 0, h, 2h, ..., 1. Finally, the function = f is=20 given as a n+1 by n+1 matrix. Like the vectors before, it contains the = values=20 for x, y =3D 0, h, 2h, ..., 1. Each row = contains from=20 left to right the function values for increasing x values while = each=20 column contains from top to bottom the function values for increasing = y=20 values.

A vector occupies one line. Its values are given in = ascending=20 order, separated by a space. A n by n matrix occupies = n=20 lines. Its rows are given in ascending order as vectors, which occupy = one line=20 each. All values found in the input file are integer values.

Output

For each test found in the input file, your program should output the = matrices a and b. Matrix a is a = (n-1)2 x=20 (n-1)2 matrix (the discretization area (cf. figure 2) = contains=20 (n-1)2 inner points, which are unknown). The vector = b=20 is of order (n-1)2. They should be output in the same = format=20 as the vectors and matrices in the input file. Your output should only = contain=20 integer values. Note that the expression 1 / h2 yields = an=20 integer number and that all other calculations can also be done using = integer=20 numbers.

Example

Input

1
3
1 0 2
0 -4 0
3 0 4
0 5 0
6 0 7
0 8 0
3 4 5 6
0 1 2 3
3 2 1 0
6 5 4 3
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

Output

-36 0 0 36
0 -36 27 0
0 18 -36 0
9 0 0 -36
-8 -152 -198 -333
------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/Intersection.gif R0lGODdh2QC+APcAAAAAAAEBAQICAgMDAwQEBAUFBQYGBgcHBwgICAkJCQoKCgsLCwwMDA0NDQ4O Dg8PDxAQEBERERISEhMTExQUFBUVFRYWFhcXFxgYGBkZGRoaGhsbGxwcHB0dHR4eHh8fHyAgICEh ISIiIiMjIyQkJCUlJSYmJicnJygoKCkpKSoqKisrKywsLC0tLS4uLi8vLzAwMDExMTIyMjMzMzQ0 NDU1NTY2Njc3Nzg4ODk5OTo6Ojs7Ozw8PD09PT4+Pj8/P0BAQEFBQUJCQkNDQ0REREVFRUZGRkdH R0hISElJSUpKSktLS0xMTE1NTU5OTk9PT1BQUFFRUVJSUlNTU1RUVFVVVVZWVldXV1hYWFlZWVpa WltbW1xcXF1dXV5eXl9fX2BgYGFhYWJiYmNjY2RkZGVlZWZmZmdnZ2hoaGlpaWpqamtra2xsbG1t bW5ubm9vb3BwcHFxcXJycnNzc3R0dHV1dXZ2dnd3d3h4eHl5eXp6ent7e3x8fH19fX5+fn9/f4CA gIGBgYKCgoODg4SEhIWFhYaGhoeHh4iIiImJiYqKiouLi4yMjI2NjY6Ojo+Pj5CQkJGRkZKSkpOT k5SUlJWVlZaWlpeXl5iYmJmZmZqampubm5ycnJ2dnZ6enp+fn6CgoKGhoaKioqOjo6SkpKWlpaam pqenp6ioqKmpqaqqqqurq6ysrK2tra6urq+vr7CwsLGxsbKysrOzs7S0tLW1tba2tre3t7i4uLm5 ubq6uru7u7y8vL29vb6+vr+/v8DAwMHBwcLCwsPDw8TExMXFxcbGxsfHx8jIyMnJycrKysvLy8zM zM3Nzc7Ozs/Pz9DQ0NHR0dLS0tPT09TU1NXV1dbW1tfX19jY2NnZ2dra2tvb29zc3N3d3d7e3t/f 3+Dg4OHh4eLi4uPj4+Tk5OXl5ebm5ufn5+jo6Onp6erq6uvr6+zs7O3t7e7u7u/v7/Dw8PHx8fLy 8vPz8/T09PX19fb29vf39/j4+Pn5+fr6+vv7+/z8/P39/f7+/v///ywAAAAA2QC+AAAI/wABCBxI sKDBgwgTKlzIsKHDhxAjSpxIEaG2ixgzatzIsaPHjyBDihxJsqTJkyhTahSosqXLlzBjypyJkiXN mzhz6twJ0ybPn0CDCp3pc6jRo0iTXiyqtKnTpz0BQJ1KtapIplazan2KdavXr0G7gh1LlqjUsmjT RlXLtq1JsW7jyoUrt65aunbzjsWrt69Wvn4DTwUsuLBSwjfPclS81LBexGY/KmbseC7lsJdXastc uS1kmQNBcu7M9nNUvKNJpzX9kqBo1XZZuywoGXZd2SoN1rYdF3dK3R5T8wbruybw4X6Lvz2IPLDy 380LP68ZXfD0k8Krl86ek7t2tNfffv/vG76k9/F7z9NUj95reZLs2/+NH5O+/KrvR9q/P3j/bP69 +deSgAAeRiB0BW6X1IEJGpXfVQ3exSB2XVRo4YUYZqjhhhx26OGHIIb4oVUPhsRZFx2hyJGKG7Go kYsZwYiRjBfRqI2NOKaoI34Tirfiji0C+aKQMRI5o5E1InkjiT2ap2SOP0YZpJRDUlmklUdi6VSJ r2m5pJdQTilmlWNeWWaWZ27ZJHxPtgmmm2l+GWeY/S0IJ5l4mpknmnsm+eafVHG525x36mkon4f6 SSigdSJ1YqGIRqpon3JSSmeilUIlaHAidurpp6CGOiKPdjKK6aWSZpoqqpOeymSpi8b/aimkra5K a1ObdvSoqbbyWuuvqgLLKq5r6nfrsMgeqyypji4rq6u+BivtsAbCOmu0yWLrbKNH7fpsr98Kuy2m 1Tar7bnhTjsuV8VeJeq78MYrb4WvmptutveuKy6z3eqrLrrX5suvg/7iG/DB0MZZbr8AJ4wwuA/v G2i7JhZsccMQa0pxlwJ3HPG/HmtsrcMkZ2yyxB/buDDBGKNcsssng8ytg/PWbPPNGtbLcMgxG/yy zOQuuPGgKV/MM8zArjyUt0W3DHTPSiotFNM/+wy10yoLPfLVRz+NtNfSSh2W0U13bbWaW399Nthr ry02UFRzXfbcVetMM84XCoT33p7a/720v6HRLXfdA/+NdeCDJ66231NbjDjbZP/89k9xL76ZT21H nurkPFUO+VI2ZY511FrbK/ikoYluNumODh1c5AOpfjrYnO/kudWPE766l7XrBADfHcYO/PBZt572 53Hmjvzs1Ja+M/Mp5i677pT23p3mST4+veJhO8/y7lMivr3lCntvOPhkBj7+8kEbbzr1DqeOPfvs Hr8+jLHP77b5jY+OpfLkg17hpka8TgmvgPBi3Nj8lzys3O9W1sPJ7QomPf2xrluu05UFf6S9DZbP fc+D39XE58Hq8W+B6EuY+krYPgzar4TyY+DHIpgYFiIqfzKU3AnhZsNaAZB+ARSZo/8QCK8DEtFD CuRhDmOmvAfyboeU6+G0KrjEpEGxc1LMUQer2D0Qfk+AAiMhF4vnwvdxT3UrHGMSo6hGRsUwhZu7 ou2ySCQcwtGKXjwfGAX3QydObEEaqoggGxJIvR3RQmvE4kYGyciE6MqB86PhehYzwZaJpQtUvCOx 0nZJ7HVyi5qUJFEo2cNOXk4xfpyZHjFiyju2Mo2hlKPvSNnGlTDtjXsUYghBV0qq2TGX9TPj5Xpp pD76S5SgKeQhPWTIEBkRb4mc4yIrebRW2vIy60NmfWipSRpZM0aZnJ02e8JNYP7qm0cCpThleb1p EvNPYuzaOFtTThEiDZ2KguU689j/P1u+U1a4tOcmhYlPIAaroPjT2zHZKcF6nhFJCJ0mNU3Iz7Ao c5kcaua7nimqaM7SnbXMSEQpiU0IMrSGIO2mQ9UWTh1WVIn+DCkrJ1okdbq0jLscpkx5ea54zvCk k0ypOQ9KUzTp86YOyuBiVmpQVo10TAGN2Tz/I1SBOrWorfolUpem1EUyNZUzXZcxn/hSyl0Uo2fF 2+8+5dF2xlSlVX1otIi2mcgQFKtAfOpQOdakXC01rkE8mV6tSp3G2DWng1VcYgOLx9etya9eBWxT IYrXbFYsMV3VjGTBylO4ftCxmOVkZWm12Mlih5XryaxISdrI1pbWsq8zLGhUy8pC/LrWtWjt0GlX O9sX7pSxpv2jMIM7VM6ibbjGJS5hB4jC4tJxrkAd5W+VK1cTZRCymvWsc50mUS5hl7faXW4sRcqc 0CL3ueGNI3kd2dvW3fa98I0vI9sbIbew97D13Y5rukPb/NZnU9/1r4QE3CDvzjQzgesvgZlKTtlS ZjKyXfBU+Ypa8J5FwRIOa0MrXFcLczjDOA2qg7MLYRCXlaoj9nCETTy1djGmxByGMYtb7NYO2zjF N54x3Fx8zRgXBcMZLlFqRgPkIFOMyHTVMeU2Fp8iG1nJ3wkwlJk7ZdhIucq6xDJvrqzlgXbZNlz+ 8onF7Bz5mvnMaE6zmhUSEAA7 ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/Synchronous1.gif R0lGODdhXgHHAMQAAP////f39+/v7+fn597e3tbW1s7OzsbGxr29vbW1ta2traWlpZycnJSUlIyM jISEhHt7e3Nzc2tra2NjY1paWlJSUkpKSkJCQjk5OTExMSkpKSEhIRgYGBAQEAgICAAAACwAAAAA XgHHAAAF/+DHjWRpnmiqrmzrvnAsz3Rt33iu4yLh/8CgcEgsGo/IpHLJbDqf0Kh0Sq1OR74CQcvd ervgrzhMHpvL6LM6zV672/C3PE6f2+v4uz7P92ILfYF7g4KFhIeGiYiLio2Mbn+PjpOSlZSXlpmY m5ZYmp+coaCjoqWkp2kjgKispq6tsK+yrASes7exubi7ur1hkbzBvsPCxcSEtsfGy8rNzMKqz87T 0tXUn7UcWdfW3dzf3m3A4OTh5efVyebr6O3sr9Hu8u/z9Y7Z2/T69vz7deP++r1J0GGDBoMIDypM yHChhgQIEgSc2EmbQIptEEgAwLGjx48gP0qYsCGCg4soBf/Fw5hyTIKNIWPK7GhgAQMLDFjqtIOv 5c4uGmcKnTlAQoefPiFpQ/ozwYShUGNayHAgKdMx6qyifBm168cAEh4YuHp1pVaMQb2qBTDgAoaz WnuSRYng6Vq1ATZsgIsUIF97XDkOuNsVQ9W5OrPicYD4WOACMAkPBZvgL0uzeTpYHkbg8UYJAygc kCxTgYbDm/f1PKR5AoIOFRrLSgsZAIcMoQeTBhmAgsTU/P4E0lxBW4MHWxp8WM68ufPn0KNLn069 uvXr2O3W5sCRAoHdMTUA96eYp2YKCAo4eKAlAYX38OPLn0+/vv37+PPr37/fAswCT3EHgHfghfQA crIFx8H/Kn2cV1kDEIhhxYQUVjiEZ7Z1912BIB01njyrNUiAbwSsp8UXgKSo4oostujiizDGKOOM NMpI20YCVrAhhx5pluA+whGSAQESIEAAAycxaOGSTFLhFI9dCWDBh++UF0c+Z9So5ZZcdulljJ1F BqVQA0z5I4iY3aFkGU226aYSBaQ1JpkWnEmPJ4eogeKXfPbp5591zQkVklS2EyQfaHTx5qKMBhHY bgRoIOloIGnw0QLsFTqJAQlAdAZqcVgpB5Zk/GnqqajCGCZ4CETQ0QMMAICAAABssUEDCXSEqaaW GDASBRMsEEYCOv6zYCBrmtHosm+2JyZhBHa0AQASFADA/wINaKCAAR0pAIGdn1RQGQEGRLDAiFpU gAAHFxhgB5596MlFqvTW6+cWckpGgW4cTVvttQxY6tECHnTgwcEII1wnuQk3fLAXGTiccARbECwx wl5cjLCwBESgsQdvafGxB2MRYMHHE4SxQRcPnGRRBwhUMFayZRy6R6JeMKvzku3ZRdoEOwIwbcrX ZnspB5ImrbQGQBdgwNJQe2EB1EonuQDVSnuBddKVFfDA1hoUGynYXEwAdoRg7MUFBCepDbOOP8Ah ahukjmHv3XjXmEW+hC3gQEcMPEBtAb0xMK1HCiBnxIlHKFoE443n/HgSjk+ORBgEqO1Dy5n7ALN3 NCubJv8doVe+8+lUrPIoaTFXUMECHBXwXgQNxPw3RwugneUWbCiKMxy+754iI/OuUaoDaB8wQVUr Q/CBeyeGalGebM6b9/XYr+jD6qQJ4L1HAQTQkQDiAyBAbKO6gaK8oxZffdyL5JzGGQ8crMEqCnjg gGb1H1C6GDbDw+9QR8DUFYB7ggJJmVwihgPMzHjyE94bglcq3iXCfRI0XeVWAT82zE19E8yeCK/3 AwQm0CML7ML+voCADHSNff/jCQYxxzhDRPB9FNSTBUc1ujn8D3IFDCITUsS3E3qkAgroAts8BAgK XOA3A4Qg8G5otx0WYoZVBAPwaigHeA0ChiMM4918EKj/WrnKiB3RzPp8VAsDTCCJ6sNiDucnxwjW LQ9UpKGE6GZFpfCOEFEUoiDhdMD/PMVaBqCVoAoQMhSpcQOdskADJpjH9U0xesL7oQ//OMA6apGL HrRIvEIoxlKeqoQwIRIAOuCACDygfGMSD+bUGIH3aMBMYIRhHDmpLFBS746VTN/w6NbDLYJwkDqL wAWWycwLKMAHDGimNN1iSNsgAAA6mlMDGGOGozDON72rpCezCEwGafKS4dRiCDvox3LuUo+mjKeK COA86DRACw+gjnZw1B1+cSh/L1SUGk8EznfSsX281KM7r4RJHIpTQn1MxVKQJUFkLqsAznPXEIAo BAzl/yhoBWrAJCuISXaStJyke6g5L5hQco7TeiY9wwfnR0p5ltIHGc2iqh4TIA1ByQHc7KVLhRpD hrY0eAtF6DtVKrlhqq+Y66SpRRelhYwq9HFpCYC1cgUAA8ASPEaRo0NPKkVKNlSnLP3hSRPlS4nG 1KjwtGk86fkBjaozRmU0YgTqCsw70m2cMjyqHR/BVKLq0KluPWcGLTnVRmG0rsmSHBFMCKVsGal0 oTMrSjd51rsqNp3pZCxb34oVUX6xpnIdIU756tkXrSqBfjvJHmd711yO1bZCTepf3WlYNkVUT1Dt HR8b66aqQna2k6MseBrggZysaa1MVVJZQyvFz1Z3uv+C/SRpfzG9eOEwtTfNKVpZhK9nFWgAHhAL EDrb1KHGVZcHLep2A7tU9mLutzWbKCArStziWvWqQugZhwxgAAts4C17ym5mqdvJslY3raF96Q51 O9PDGg+8YVytu1pLXnxhwAHbDDGIRyziEpMYxMCagF3by97Fvve232WfbndZ36RmQbHZsK52pdpf JmkBAc5F7ka1YAAGGPnISE6ykpWcjx0fFcaMxW4Uf6fjTErZmDP2Ih6/i2ERSna82vvyFDL7UL8a FL64vaoN7RtMPiJWDQFUE397zDMLRpajcbPen/zqyQU7uMFTziSEr7xOCpsWj6jtMt68oIAIkNRF 25j/kHQdN0czxze+Z37fjA9aY2HiOLgXPiadKaTE4yJ1yHa+l2if696FVlrCGHww8bL75EK/q7tf 5LKiF+0F8XI4zHiOApnZbOk00zbTuSUsm1vsZsXGOaVkHTWp1wZZAAdhpXvOUp+hHGtAV5TKgwY0 ludQYd8Kd9djzFlOfz1PMUth0iyum4tpi+lLy1jZvIXnYT99LEAOV9pVUJJVhRxgPat6hqyu7auj 7G2ygnvWam21drOM6y0TFd28Nu6K3Qdpdwvb3H2dNwXrbexTrznfxza3s/WLqDkD3IBb+C/Br23w PvFZwdzmpZS/LWiIR5jWMDX0piF6bozTK9LrtmTH/4MNBXj7srdAbzKaY6xpfHe62VcC9Wh5/PJ3 l7pkpy54qm2+aoULVrM7d3jPrwh06JaqrXCuuB7AaPR6bcPXSm9RpK0w7JC7nd5Tv/i9T351EL45 v1FvuOm6/vEtOMAD0/FOZ6iTog5Mhz1em44oqZMeAlRgOhdAABxJDmudP5ztETf72+fLhXIrK9F1 zzbjHDCB2tv+9vck1+13X/sfRID3tx+XAoBve4ppgfi2L1kDkD8BB1DgA7/crXyHrmmSezrr/UbU vxnf9Psujul5bhwHF+dxdh5hAh+g6CU3e/ibtV3iCaY46wO/p9ijilThpCSt518HWj+f+tF1Q5xm df/Wh3VdxHLuF23c13gLFz1/tWztR1Fr8H/qh3anhwgv9XcTR26HNnewZ398gn8QpH8xZGMCpCcU mGsINX0EiGbXx0PZdzO45FsL2H0pt0cPiFLnZHFlgH4VyGBrh4Hvp3p2A3eIlydMRG8geErwx0H5 V4KZ4H/QF33Ipmbxs2zyZoDisBSs4XnZIhpbUBMKMIZkWIZmeIZomIZquIZs2IZjqFFEcGfykoMX NgnLloItt36yhno/t4NGWFoAyAXnoSPrkRzYcYiImIjY4Vx614RY6IRSJX2cpSx4OHdwNYCEV4CG x2+CQAAOQgAQogUHsGSkWIqmeIqomIql6DwM8Dj/+kZDdMhW6wdXZuCD+6WHF6h+fThu0rMIxGEk hQh+NegDCvABrehajuhqN6ZDUfg//0eF9lZ1meiCWthOwzEilVGIY7eEMlKMxxiHr4iDcQSBVfaE c3iLFhiEukhowsV/flEHFNMAY5EAcDSMR7AAxnhjwCZaVUSCkVhjfWhH3rWCmHiFKNeATcWJeQJR 28iNquKN47de4eg7sahts7iCOoWOQPho4eZivHiAgWh6w2OPceiNebaPGaiM+xeSOTciUziQ0leQ nYiFUHdfEQhAXAiTkOOQeoOPx4hnclg9Ffl2dugGlXiCuKiOt7iLtiY3Oel+9UeSj2OS2yiCOOOP /8woiYZwlIEVk4NnkIVHUzepKKpAPRvEkzRCABAJlBMpP0NZhBfZibZYCBlQl3Z5l3eJAXi5l3zZ l3eJIBkpbk0JkkLogBEplXFDlVWZjFhJg6/AlQJkAWgUE24kY5oolitnkBGJljNCAD75R2KHkFEH mrIYC89YCBcwmSGhPJrldh8ZSkIYlYgZYFTZiERYPI35ehhpCHPpb5Kpmh/BmqTXZpuIfTN5lpwJ JmuJaqKJBgdQl3oJnX45nRlwm18EmTL0m8BJEymTdrXWjvJXmPoojDVYAIppm/wYB8qlFszRef3H BuhHPKm5nR3BmgBJnJjZizMJmuOZnHr3mYe5jP8IiQbruRYOgAEWsABVMYllgJ2kM5/0CQDC6Z00 85pr8I6bJJuzuV612WHWOT8FehcBAAERIAH3GQYO2j7aSZ8T2pJtSWkK6V3I6Z+QtpyhGYClUkQc UgsXMIIZwTHIUgArup1uFJBiNZhbyJIUGaCIaZ752J9OmJ5ykFeCIiXD6X2oGaEcYZ9XmoXFCZL7 uZk0CmkAypY3CAchuhvrkiRNGJXIAqEs2jQUqoHxx4GxqWcbem0dipKJpyxpuhsEYXyDwAAmyghD CpwtWpP4uW/GaZaSNaauZaM0d6Zy8Ke7YQBJ+IhekKLAc6iqWaRz2qYjeWtK6pZMKpVO2opQqqn/ cHAjRpRCUhoGvRkIcLqdXBp4zPalSRqmOwmp5FWmzLkITwIAtXEAATArc7IAKTOgW8CpE1SriCqn DfedoSZ0EoinFUKoErCt3Nqt3vqt3SpbTben7aYIPGUbDwABEPBVBVIALjR3zto7njqZifqiXpqf MHicj3p/ElA7B4AA/xqwADuwAluwA8sAdtklavkBGmCXevmw1Bmxe6kB/7ERHcAt2TQmJpMHs0oI 84pGoDqtFYqk1oiOdlYhyzMmy3EuS+CkiviyFZshAwJSHLIXehCvxgOtqnmrLkqpMKqf0derp6Ji gqJMDNA1YEKeE1JG2+FTgsJGcXCaiKCz9Cqt/yJHraNlrfuloROSsgk0ARlgJJHjCucqINEyJ1Ar B893RUKqpRJqtfaqqD+br44qtKZCAF4rKAFwALGRtLCQVd/BLcR6QnXBE/E5kx9rRCF7tSMLnqQq nidLIXl7Qh5wqiw5CMNKnwtkBzibKFSLRjwrt/fKqGAatBI5tIKLRhjQNJBGtuY1mbAKBw/QSG/q tvWajB86YXZ6rZEruZSCRgMQAWIbYLDwWvQ5os90JZKQuCd0u83pswnZqDK6r6fktff0qn1LXq4Q J697Fxjwvf7UERVwKd/iQxfEvAm0uHTauNX6uNdomErLBF4LAb/LrjySfhv1tz5DGocjNCGhAf9f tSukkwifixfhExWhG7eYAwGQtzJjgACgk5mCoBkJUGTj0pBfQrQAQL8BkAEQEHqCUgFDor2tYKky ATQewR1Egy23JDgc4S261blZMp8BUMBCYQAXYAE4ERIX8FXOG6tHhTw+oDxVcS4FsAAJgAE5obUi QgEVUKJw5BRV4RTIV6h4i3xUwREcvAHc4gEJBAGqyn+VYLySgcLSMjgAoABGMzCri3xJAiAZ8AHM N8e3p52p2QAb/LtDgQAufC0QIKHfMQAJYAG0U58ZQMeILKedwwWc8zItFAFg91RPmRkjchImAoof 8EzKIR0e4AXUQSkc/JteLChFOk+vYMIxYcb//YLGLPwRxQh6RPay0fGbASCZ33sAEJC6QvEA19QR XvwAuYLLF+A/9SnLz9EFDoxPbaMFHeAeYoyhcfCJQsxFlGMEXhsBxirKJwQr6xULOqoWquy/Kxww l6I4kcN3tGzLWtzLQwEB7AwAvxzMEGABX1WZfOcDpsU2neOJMYNfZgDNcvCL6qE4kMigX6DBocwR oywoDvCTs5C5pOEbETG+ANAAC2AayycRuoJ5SXsqNJyaGMAR2BwVD6DHXuwA8lyrPzzAXWABv1Eu 56INCvA5OArQbSDNmUKau5kzXosAgwE7AHA7gnIA1SLGjfDNa3EgDgBLDDBJ3PIACsARARAB/xds OejcEeq8we88E7gMOILDywMyzz4Mtx6YD75SexKgqr/nMWcdyfNj027wTOnhNIfhgAbdBZO7nXUy lp+Ayue11x19KrQM0uvcFYykl0AdGkrsaKvLnWwrXQcwhkhrngbwTJFtLGNcUlGqlV6Q18B5ATsJ C34NHpsbN2pEAAcAefUYcDacQAlc1oBncqXbCLj5WWigwREKxqZcwt1rRI1mQYPsIwXQyZGCwV3S 2kNN1gKEWHMEU06Z2W45Y3ri2YSBAOoaKwrEVb5s1IQVGAIQ1arJRtCEqT9A3DZ71Vq60umDJext k3SbVqQJbbWox5JhACV9ADYBEl3tEZVbjv8Y6KrhHXTe5JkNe0+ogr6k3J1B+lyqZ12uZ1Q6zdnH R9+EEdKvck3z6QEH8AEeAEtTeLl5wLRPcRQeANRzYrNcdNrmTWrIPSev3X/m95W7agm1Ld9ggNuk Aaf0CwAZvt++bIolA2SlaMRHYopckACBs0+28RRnyyMFIDbDJNzELUsebbvKrSbMnYsXOslUGOH3 ibcUfhdwCtYWruF/zN/TcYz1FB2yRACf7AMWsBwxa7Y0uxsFoAHuCT+n/XsTQDGShuAufuXKy943 KN1lCd8FHZedHeZroeMYrtA+rtBrWDKRrYZQxIZEpAAOMOdOyyPKOnFJxAVvmCqAPibqezP/WZ6e Dt6BmciqwETda8HH4cPHHNHDcW4A6+oRL6mZhueqHwUlAwA3G9TN8duyLT4mL84TMS6Nsy0JNX7X W4DjpLEAOXxGxNoukrkA2onDzm6+nWEXA4DHFMARDqBIBXIAaXuyu00vxw4l6r1FDK6UaADXtOjl wwnmbrvXxbs3vc0jMw2Ym9nN5dd0pe7ugr7eRBdMPHHoEBff0D7hbgvaYvAAQEoAI+zsqtPvBfIa I2WqeIptplLwPHLqyx3vYoXZzbiMXSkGsI5G+q4FZXoB+CvhujnaUREAnmdSoR3jfNfuPJLsg57w VjjjtO3wig4gglsA5o5G3HzQEaCqDZA//6zH0jY/FAXAAWZSmuueKj7PIe9eUwnGkbt7CCZ6VvZO f/PL6HMCK47z9IzTyTTvfWTMIQIgAREQIV66d4OF3hH69TxGaQqPfb6IcALamiwPyqPRrxlwQpCx YX/09H9UuYYvi9wLJRCQARhQwYXPcR9fc34i8gOm4P5m8k+G2RM8Ivnz8mBHYKzf+gTmBa7v+tds rB/wNws9JhrB3pB/IsQd9wwJwd4T/MI//MQ//AFQMBp+kiH3qAP/BAXQ9ecONPGz7MkGtCJSAW9x HIYoEZscHXDv5tOB+LWs0IKSAENiN7u/Bd9vpHB5ANP0/vA/TcQefkSp7sbtJTorAHX+8/8HDwIF IZKjWaDoqZak255xwXGyDZcdQSGEAxEICMhBCDkikw9TsgnBHAAAYsAi9Uiz2i23q/00YEFFT0RY 4mI3W9DUfsPj8iBOxTa76fo5vz+yclk8eBEWdh1MrKWJtZXomTEuqtEoVop0FFAk+Dw44vE5zk1E TR1UXRmmdkkoPI6wWMpItqTEzq6wvcq+vrjwpgAHCw+jAGoFYEAYqDJzGUzczgKv0MpGm1Bep+lU IBQ0AKkRT/dOj0opA1RIdTQzPyzQiUHaul031t/e2KXh43/6CUjnAhcBFSAgcKcQkStteVw1tPev UrZ8MSqcOVBgAYNdfkLBKTBhmcKSABz/JOKHC5a2liwt1sn1stcvauNuEiO45cOUhCZVMXRYp9aL fbxsVRQqEc/QcTanETj3s1kECAp8hVJKT19ErUupRczziZ7Asn+4YDkAYWqqoDAfqhEX9x4Nr1iP MgIFF59UtoZYyS2q1aVdo5FiEk38CyfjFMakUCggRadfL88KBwN7V3AsSm/73cH5tFbfylwSfIjn aV7XSvUmYu6qMu/YvWbnFKAsBUMWCwJMH0r0GW7WO7DXJB3O2ddH2yNGAt9yQMEFBx6rzbREWPmu w/tYEF3cmLFukV+iS0+pnBze7tlxJFc615rTcrWikooeQcIR2fPl39OaV9+FxdQbZN32/9EGETAo QQYUMMjgBxFSWKGFF15IgXoDTgRRJLEQUNd6msWlF0B85ceWARlkoEECCRjQmjWfbRfbZmIhBh54 4o3nlAIJ/PgikB9o8qORQCJ5pJJJMrmkRuuFF+VQ9Xhm43E8ZmafChF40EGXX3oZJphjitkBBgfK +NJX9wTIHWu0bFVibScmGEecKEx4p5uBvYWmgawJGEN8UHrUB0ho1mkoJIvceWM0Ne6ZnTzf0aRl j8Po0sKEmUbaHY1SMtreLIM69N9owpxq5TxxevqnRa8FCuCMxu2xB52JHpfCpp32U5ifHX6oj4h2 wZmLibjxqgunahY7mC1RugnaTIIpdv9pY3fkqaphn7LU7YzXVLlngaJZmuyiaQIqK1fJEriGPxDh Kkeju5rLp3wduuuqJKR+Wuix8pp7bkzuwQSpjdIyqiOc1taHw6bvRYoZe9BiBXEL/LIpFn3EpFqv sp6spLG6rsX66pS0PoRgvCFZs6u2b/aJL8jFCcuBxCQeCvCtL3+M3ZoWK2JwtDLlWKmlDFNMR7b1 OprPxN4221kNnY57U8c8fxyaXH22qW27oKXsXLzzRpAr1b7KjDK4Nag6bUA5l+zssrgQLJTQN3vX VE1HI+3owzz7PBiohgFNAsYg0pzq06hiPVtDwZoMYtyvnQxo2GLjOpTLTE8OtqkygTj/LI04Yw4v yy8LPPe3BT9buNNEu2c0ln33ujTgc9s9uKOuixBubFXXh6XHjq+29ciSmD1g5cbOuTLAstB7u56l pm352ry63dzOAU86MHbOPsr7s7DrvTjtWTpctvjgcxv199ocrk/ifHfLOLuOt5q8a12fPav1iN5q bC0rG+emByt4zUxkrhEd+5KmPWShrnuqc9/rwhfBvK1EYZk6n/08YTumSUx3uBOf77gDPI6Vq3EG nGDn1uSuFsrPf8z7lfNYBj0CFhCGJTIVyCYXP0s4wAExKoAChhiXA/TATs4BXOqqUbcKamd92iEf ffY2u77h7m8FDGH9CAc/ttGIAg94/wAFgtCNmICjg5hSoYdCpi/KSe5+Muzh5QKYuQHqsFRoQ6AL JxciMMoHA94QggZ2AKMNoIEAEagBOAhggDKa7ldtkyCzSNeS1l1wLkXbG/0Yhq0ISNFuUOri7hzC QItsoFYUWEAqJRAPByxhA+AwwNRqoYEP4DKXutwlL3vpy18CM5jCHCYxi2nMYyIzmb/EofTySBwF 0vF6wwGkCCrwATpowAAXaEMDKoARsUzAAuIcJznLac5zojOd6lwnO9vpznfCM57ynGc6G4A77I2S ghX74nAIkEoTJIIC1xTBBrSpggZYABpHqSFDG+rQh0I0ogJppgHb9DnIIe+UDkFABv9EIMgdMCAD imRAAYJIAA2AAwEa+BMHW+rSl8I0pjL1JEW56L4pSdMuBuhABwY5AQQcoANLCIIEdMCAJRgAI+GR KFOb6tSnOrWi4tojDyXiQ0D2E4F28AdLZ+rVr4I1rGKtFgjzackN8tNXS91qTUgE1bfCNa5yNVQO TVi9sLxGo697xKLYCgu+jjWwgh0sYYMnPZviDKdSc2Zf7TGW+3BmrpKdLGUhKtXfUXV+VqUSVuVG N6hIELCFHS1pSwvTe06SWCJ8H1I6a7K/+hWy7aksbWtr27JQlLGnA1ZV+6HXS/JVHrEVmWmLa9zj jieHoXxKYld3ixICCLaPnc1fb2v63eva9rImzCw0N3u9mwW3raFVHHLLa97CojZiZl1OBtPaz7VO dyvVxS596xvX3NqVj3ry42/HF17Qckq05x0wgQWrXMQuR7HPreV7pXsg2S7VvhKecES1q9as6ndr nB3af+8z3k4WOMQixuJyL6laUsautdt1cCMgPF8KwzjGd2xmfi/aWzb091H/6OtjiTviHwP5fAde r6gUTBEGK4/FwpUv3GTs5Cc/j8bcfSOCvjuiDg+3q0HeMpfJVVMiJ01HKlarktsaWSijOc2SHB6G baxZ336ABnKeM53rbOc74znPet4zn/vs5z8DOtCCHjShC23oQyP60B8IAQA7 ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/Synchronous2.gif R0lGODdhXgHZAMQAAP////f39+/v7+fn597e3tbW1s7OzsbGxr29vbW1ta2traWlpZycnJSUlIyM jISEhHt7e3Nzc2tra2NjY1paWlJSUkpKSkJCQjk5OTExMSkpKSEhIRgYGBAQEAgICAAAACwAAAAA XgHZAAAF/+DHjWRpnmiqrmzrvnAsz3Rt33iu4yLh/8CgcEgsGo/IpHLJbDqf0Kh0Sq1OR74CQcvd ervgrzhMHpvL6LM6zV672/C3PE6f2+v4uz7P92ILfYF7g4KFhIeGiYiLio2Mbn+PjpOSlZSXlpmY m5ZYmp+coaCjoqWkp2kjgKispq6tsK+yrASes7exubi7ur1hkbzBvsPCxcSEtsfGy8rNzMKqz87T 0tXUn7UcWdfW3dzf3m3A4OTh5efVyebr6O3sr9Hu8u/z9Y7Z2/T69vz7deP++gkMSHCLuoEICyps F2+hw4QQpeGLSPGhxWYAcyX4wLGjxw9eNHz8GGHLgpEfvf+g9MhgS4SVHDWohPnBwJYLNCls2UjT D80HWx7Q7DATZoItFFYuuGjtoKwPHSxInUrViwSqWC008JEgK1YvXqkm0NIgrFQJYM1asEkgglqg BA6oteCFgtoFPhao1all7gEfD7xuAMmUm6phBD5cMNLlyCrHXhhHlqwFMpLHlC9Xzux4c5CkFb/h 46VYzhZAqFNvVs0aTOtVfF6jPr2msmzYdk7f/nLbtmoCEz4UluY0VocK+c54HjIb8vIgfSynoZ0Z znMhjRk/LwB6OLWMr5KX0f36R2/X5Qntxk3Gt2w95Mtz6Z3lN4HuoZll40WbzXUgzXFGBHu5FWGb GtQZeMf/fwBOZuB2wAmX3zXFuXLgdPTVt158v104x3r+aShfbufxthuH94E0ITPgwaKYdZ0xaJ6D 2PVX4IDiiZEgjnTImFxn2OHnXTEtmlKade+JOOKJsb1HoGtKsgZfifMxaZ+QKx4z2jAvmvagjzoO GJ2CbuzI3IKX0cgchMENOU2RrBxZZoYcSllla5HhAWJtUXZIIn13piclaFkaA6copb3hY4AKyjgf fGRiuCiazmlWo41u7nLoKXL6l2SdfjK5x55ouLekaVSCmlqU2xTazJa4dNmGdmBmt+Ygks3pGQW8 9sprBb8GSwGwwwpLAVtn1rrdo5kesyknnSJIZ6objupk/4i6bYAnbMwGWkAGG3DQwLaqNidlBNq4 Co02pC2maIxpOoqplzjq+sMGAOSr77789usvABJwoIEBq6mJ3XZYNnvLs6NEW+qn1CbZpHzYzqbB vxhnvK8AFUTgAHoS2xeculoyjImsZX4Zr3a4RiqtZxdrLDPGB3Awga1i1piUws6yO0wCf806LaDl 5rngtXzShu/MTPcb1wQmhrzqyCTzYjIxi2LWKGV55CppFjE3Lba+CUAQNJDQJVx1LFdTcnR65bIn sbUUJ/3Y0mPn3YAHfZp7JWFrzwJrLxQ8EAetKz/Ycr1fh5T34wAsIIGjbErIMy5ti5HBIg6bEbd5 RFerJ//SpdZHQNgVQN40AlBbuSqhl/eSeRdEEWyATXgkiq3KlTbatcvjPVYA3hcHAIAAxquO8QIQ MKh1FmrHXsrsXhBFAQQXTIDAFgc04P334IP/gQbhl2/++einr/767Ld/ftgXV6AXBAMo/+8BGyAg 6N+B97LfIQToAHfQ4gDDEaABNEmgAhfIwAY68IEJhB8ACgeABizAfv9iXc6gQwDmSU92PuuD9Y7i AAj4wAAJSKEKV7jCD2SAhTCMoQxnSMMa2vCGOJShBClQvwYoAIP/2gColOSgD8IjXYEYIQEKGLX3 HOk8UIyiFKdIxShKsAICqOAFgegvotyqQasyYiuopwX/olRgeyU0WI0SZYU2uhEKxJtg/RiwRS7y iyhSio8XErCV/s3iMNEBygIIhoCxxK0LL6qiIhfJyEZqIWwXTIDxbGLHfjEROp7pQvT8OIqJCMJz tUqMu95IylIeIWyVlNkA6JJHc0VIjEdkRHsOuYUnOvKWuMwlIPCWSo2tkkaYgc0mYakJMuZIjQ0i wAVKYspmOvMHqOwlxgSgPfJoqFXD5KTbAKmeMXjLTqbSpTjHGcXT2TEC6Mxivx7ArwUYEHTw1MLI iEkGBfAKLWE4gAP0UCES6SiUZnqmQK3AS+Wt5XYX8Fc0FWBCa+pmG9n8IAIokEIGRCAMCeCLHYz5 pG92/+h2hySnSMcZTchBbV/4mlzkGLCBDkxAX8y7XWVuR9OaGiApNs2pTnfK05769KdADapM/QAE COwzXR1AwAc8cDZxhBBXYUDmjArAxoFatQoFNSkBUAqwAkSuAdE8CVSKAsGymvWsaB1JZIS4igfs k61J1ckduBkbb9JSC4kcqV73+kggnlRfKfXqAhiwUAtAAChagIBiF8vYxjr2sZCNrGQnS9nKWpax XdBWFtxaCx90IKN18CQAoxrKql71tFAo6eN0wtWbAUABYG1nQ8OE2tpOoTJIJABnhRjAifLzqXWF EpVsydfiijOrkNNAAAQggJhFwCYeaEAGApC8yCEWZP/GzS45vTDR29nTBwOzwAe6+w/gTumfaRKl bdfLBNVCzgIVwKK+JECBAyAAABZwgL4c0BLasve/S+gCAy5wAY0e4AILQM6AcScHuo7KrqnKq3Yn vEhzStOXrMQuhTfcSKPlo2C/zVFoSZsm0wL4xPe6MIaNBiYUo7hbrSKxU2UJYUARl8M47o17VZwv AiCnPTkOMhU9zC0Iv8GYoEyviV0MYLzdl8f7wqPnmExlMD6KxViejoP1VOMNSVjIYLaYvnbcSwEq J8xoHlGemMWbjeY2OiSGzJKrbFsJRkAAGWDnhStwlPHQmc4wzrKIzcDRWaYqpGmmIgZQMq4CQIAm cUz/SgV/KE2ZiDjRmA5jjNnM6TUgOc7V+XMVHo2BUpsaAwrwAQNOzeoL7DCLFuzlKvXnZ1EzOdAe yjWCtowm4YYO0Zmmz6ORBSAfXXGOdbTjAi7wlzMHO9FE7vST1NDPw4FaQRqAmq2lMGxpqWGHPUw2 EAVQX9NFddsuxvUx41DoLjvpxs+u4rBLh4ZIZ5EBlLYjEnUdb0xHe17TJsOn0WuZOaM7Cd3uGpnt WACfAfzg6e7PgZI8K173yN0j+nK/p0iAeQ9i4UAsADqvDOSNg/nfHXXzoK1NcMkYHOJGSDjFzYDc SpK72WueMszZq+6Zp8K8XPb1euBtcih63NBnALny/8J1TeF5s+hCRjnS2TDwxgD05TsfgsxDW3P7 BSABElgMiKeddZ5LPMborTgHCmFoomkc6sKuSR+ULjYFRAACEejzQ52uYbhTWOpGnvEikiznUZYd CVtPuxnoLrMKlBoCCki1jTat88OftucyhgTQe93m4Yrd7+V8eMBr6YGllt4Dp0+96VeP+tXj3HQm ok7JQf/3iRdZuEfePMutrmTDW36Di6tCkSef83P//qqYV7yW146Itm8oAo2mfYZmwx/ffJjkT5f+ hAGPe8F/8to8Oj4SHDAwb5eC5NmxvvHFL9Dk837GbMc4ubRv9JpcGhY5jz3fm0j/4nK/87k3eOCX LP8McBTsRwRHp3ykgH6ToX7+dYDN5H6CNh4W9yHyZyei1H/vkXjS1knWp3/8poHZ9X8dWAbVhiot pyBYd3wcOIGgwIBjV2sQGIFnJ2gqF39C926fJ4KqkYDddwr5VyWyl308qFckKHpjUHUelisr+Hst KAswOCMPN4PPJIH85jkVCCM5mHEXUIS/4YP+84FCuH8e5YW6dISj9wtvBlUpiCNNaHlPuHKaEIWU t35USEpWKIdd0G5buC1EJ4JgWILYIIZ7F4JmOFJoSAdKOHFM6HtU+GgNwACSOImT2GcGQImYKIle MFiZOIkHoAUH0ImTiBeAIIqTiDsJYIoFeIdUkIf/uZGF79KHGPh2IkgACjAYMEEBWqBUPVFGP6EF QgETzJcYNGFISQETF9AAN3OIFWZ70lZeejgnbXgmb1h2WpAAC5CN2riN20MABrCN4JiNXKAA4biN zXYA5aiNklcA6aiNlYEA7bgACUA1rAgFrshuumeBstghf9h/UnVlvaM4AsIjYNIdzKhIiTgHi9gq ucKQVFiGa0Y0RfM5ZYgbtEQo9egE92gasBgi+xhG1HeIyASQXMMyA5ksk9ImB1lFCYmP0Ygh03gp UnV8EBlOauY6SyI6SYKRGdkEGwl/h2BmH0l9/eiPzhNQKGmSW1OSD2KQK8lxzghwipiPbUAUYyGP /w5ZL9WYdTXZN34ykaGjk3DDkz2pBD9ZJsZkPRQgARKgANfIlnAZl3L5ARsgl3Z5l3iZl3q5l3lJ axKZlPFCOQFJkCyjkk8pRS3ZYFTpBma0Tw3QUAiUVpI5mSvBAC3WlSEVkXhCkZw5kWRZlklwlj+3 CErERC3mA1sJYArwAS0BRSOJlDXyPJg0mIApJk55mK4ZlSkHB2npY/pTQBW5KkWZZh3EmqGpKprp JF5pk6EilpvZcRgAmkwgmru2mGmgRI85k9vQJeimBatpmYdWm0wJfOE3nsmynLj5leo3dZpXCG6p P3HRVBmiO/22Bd9plsjJnBgIlhsikf15mtLZef+2p4AmuIZdQ30PiElysm1acBKtGZ6xeZmwCXtL 6TuckZ7lpJvsiQYcNVXJaR/qtXFZcJ+BSS6ZqZ/C85/KWTRa8JkBSphO53PVmQgppzjcaWur8J25 aaGBqZTlyaPnaZgYKjrmtqHUZqAtQ1pJgpXAhmP2aZzHuaI7yp/K6Z+b2aIqIgUYkAFb2qVc+qVe GqZgOqZiWqZfChdWQJ0FKgk1ukGyWWUNapxTKp5A+kUVSpi3wh2E0UgeAGUYYwCtk0uJSXXWmTJK uj/oeXJP2l/OcZOHhpPz55yrEhku2gQf4Kf3o23CV4O69orMx3azpDgS8DHd6Z2sOacRGqWCeZL/ qZqnr9RhfYqp/QKoZ6ihgad5L2mo/5Qk9Blvi4qfUvqoUpOTwdpKKUIFsSqr+3IAmrqpw9epLkmj oSomC4qjxfmgf9mqjeqj52mexYYUe8pIl6qsyxqouDSonlao0wFKnzKciloAJNqoJiobilFqF4AB BMZqrXav+mpBC/CJ/KdpQ0SpWRoFyUquAMCsbaSmWPipzTett3KjopajpwqhHPSm4MVFBYR3EmBC 8oKxuCGkCHmw5EqrgmqrPziaj7BuvOouIgqvUFqi+4knjMc0BIAACpABWyGprlSpTDCuCJuwzdqK nLpuismmEHsw1Tqx13qidWoeXYdBElCw2jqb/yhaTiSrrApbq3VopAKnrgjCrnDjrlH3qzKrnnlU s3lDARcwFjN7pVmpkYkRtPmisGlatDJKgQ4bCG0asV1YqrZYsdl6sdfRVzwWAOhEbG2Wp8FJNFkr qyZ7rigLgN43eGK7mb36bGZ7tgKLJ1HLRauUAW9rrA8QnVGgBY+LqXZ7t89qtEAJqnb1IEv7Z3GK rdVCp2Ajq0xnZTmjp03Kj3QrtL9LpGeXsmfQoSwLN9k2vH+3uVwzr3kURzx2AX75oTHqs+mVun66 ukTbunnbsNIau8AHoOtFseA5uLxbIxIkSQ/wZJWEuAZIkt8qT8LRjASgvVAWubeEriprCMk7f/+J GnUwy6jyOrqrckVt6wDua0e3SGvWeyDYW3DBy73di33fq4ZIK77nibE+MLWt98GqB8Ksd3qm+wRx 2kClN8Krt1QcIcIeEGk9lG+VVE2LezDgyrxdgL88trUn27W3yqFg62eHeqVFCRwGAEQGkAEZ8AH/ ipg7ocRQHMVSPMVUXMVRfGxadGFsFbATF8GUocMqRsFSwLBR1ZGKkrSzKbEcNAEHUEmKhU5mSb5V AG4AQEcXlkY4E0+vipCoG7z660j8e6S5uq5DnEeZO6ls3Es3iwHLOH1pWGMSB2OrQMexdmFC2TcQ RbU+eb8TPLS3hbeZN5rhCyWyK3ZiMgFHLE3/AfABaIE257WEA7oFn3thH/BjaiRM4cqSVNXJODyv RfrDxxvEU1bIIPqHP5DIKuZObrk/QdctklwZastFAsBKA1sZXkwmYHxhYny6oEyg4CtLaPytagxP yKxiDPAB+2SnI4Z27Hwg0QxEq5TH5kYADNDIuszJdPvHHTa5gojBK3u5huyym1nOKoYAHmA4V/rI vhbJxasFs6zK/MXFCTqdqMnLC9vN74ero1zDazK7oIPKquvJFLrOsNzO7wxE7iTPF7ij2SxNPCy5 Pmy8X/vPxDypIfqcyGw2PLYAH2MfCKqFztzQPvDQM2MAppYACtVOiFUn+YCz3FwAydrS/jIA/xRQ ag9QXfrSvvyyzfZ4GhGQARpAvWOQUbn6P7BLyjkzzqaT022sAAegZ6l0Aa0MT4PczlI4oCfNL2Wz Xw0AAAiQRQVgABrwAEidLwwlz42xM/Yb1X49AA8gw75kQvmCABAAAAPwZO40AXANAPrMSF4AfSck AUdhQBCAABrwXCpH07uaHomir6fGAW0MABFwAAHQAYRtAb1kALnsHr0W1LdnuPbzV/mCL641WPmT ypGzAa5tavhUABjAAR+w3NLt2owNARjAR5CNMQiw2RcQAAdQ2QCAAQ9A2MvKAdN93qwWGSG0W56V ABdgmTcIzhqstGKXQKlsNgGQUAAg1WOzOf/fWtdEdtcxRtQaI9wAEFivFVv7IlbIuAW6TZnV3cYJ sNkZQ9n7ggEJC97ivcAJS5kq4tDbAAHjAle+BY3+C9AgGrdBwNYBgNv7vWfVu3f66NuBltf7YuAI vgAKri8KgKb10kZA26ez7dcUTjPc7d0RkC/iXdj6wtVy69BdwFlIhQC2jI8bLb+YFJIYyNYAoN/8 LTaAStevzIixDNzK0+P60gD6NTkBQAGEJVsSrdB2EOEAkAD6NTMdVz8ZvucOsOH8Qqs0xgUSAN8G INoEIER7Q9bQqNpW9ymvicyz3eL58uVN89JNN+MM/duHzkUIIBUXQGnc0TENIBdw7U4JWjD/hkDn E940wHEBhpVFAhAYCRCdE6Dfdatt/jsfEVBqFmBIfQ4BHiByGMBgr/uw853lNQnS/oLVqfQAjBpM /lTSRGbj/EJd/VJd1TXNszeGjAC0zJ433/7tTd46ga5HzqaQwnxuNc0ot+wDBC2r/JWizZzpgUbg lfRLdniFXUPpXLS1AghMoHY4Zuwpx15sWu4n746pzj7S0U7mdk3tkAMBFrDtSJgH/I7EN1PuPi2g i37i6641R5nwfkrVfjPv3PLMFoawHqB3eazv8AG0CGu3uQ7wOhet8o3Wa3LydqLs9nMApvcvGL4v E8/wLCfttie9mCplGlbxenDxGOTvOGju/yWH7oz+wM/zH5Uh8mMDqPrCQ5zdYwCgAQVQXV3I2xf3 2yif8hdTPwag55XmoRBiCU7f8+T+fTTPe2U98LURzqBz8Jqm9WID89sNAOOaUBygUvliAXcXWfDJ UJG1T4klWWzBABBwRQ9wd1vVSxrUUSBZCXOvPIAe9Rvv20db9VebTGcC+E0D899N+IkfAEGvL+JF E/31aDCxxQkUNOK1QwyQxamEP9sjgw34CJ+vOjL/78tBdrnaoT89odbkJDyvOoLPTuNqAbDPLxZw AD01H9vvBT71BQYQR/Jlx6nkQQ+j5ZIA8+QK9c3XRJcm5w2X7mHy8clfL6rPNJsDU71/qf8CAAJY gAFleRVEuqpE27LxGsN1SmhmTg1Ao5iCwiExiJi4bjQXU2l70paeIrVqHR6QUSi3xlQtb9wlh7M9 QwtR8bepVoPf79bkcL1DHA19KeKAbAT49ZRYwK2BjSUtorHklORU9DQs3FkCLHQkHsLIzSg21kxd kl4ZTISmyszZzKS2lDGCdj3FecI1tX2l1JUWCSQoAJkoFNgBEyo8cIbJIjIrbpggABiUEBD6EjF4 MOzWfs++EnxomwtlOYt7sexu5YbGvjZC4+omzd3mT1ifmz94G/MJzYt5j/xdUfBBga00cjatQzMK obZ08wR2YrWmHhR5EcGF0Wdv0b0bvSj/lnLAgKCTMwNnEZCGskgBBBJ0tXwR7mKjiTMvWfzYjA1E J+releHpsNU9N/n00bHz886ACAkwcmyXM9TBqSUQdJDg6tDGp0K5+PRq5ZTSZ7a2ulrnsS2BCmJC igxXksDJBQTUEjl1tODggRe7/hRQAUKDXN+W6KVLIy3gIunODm3DEZ6iWJhVaMrXqSk+slAL8Osj tbKJoC6L1to6RuZPCR02GCjr8qFoySrKsa7i+jOzhw7nzT2riUIDDRVyEzAQTBj16gmuB8Ou/bqC 6xWkQjgwAkKGApUzrAP1MhQOfwUMwMegQUPAdyQhO/bdjvK14ACG0+WFG+xwRlBSnxGw/5wFBDiw DAENfBChhBNSWKGFH4An3gbUAOdVAxDMw55saHSwh4l6oHiiiihOQEGLBhTWUD2ewOYbfw5Y4B9b xBVlnAxxyMUBj5pUgMCDELhwQANLMtmkk09CeYFUEYiXIwD8IfTABzEaRY9QDEAZJpREsVegTvnx eEOHQXzwQ3CX6SeLO+AEyeUYy13V4Jmk8alLagCEF4CVWPpjwQHirBfbWX3ymehuWdGY1Vn8eYDA A29qkeYquJQlTnJKEYlAAQ3GGcVJgV5QAqHaBPCAXxept2hbnBBoH2Ht7JSmCpSRkMClrAEo657Q 6DTOgQHe1MChCSxQqhcnXQUAA31MJf9BpiEqglmAozmakaOROpsCrwAU8EA2au2o36ZwAfmKZ+Ha qdSfwVWwQQKwjsjtR9pqBZOZRBWra1oLTAtABNRUBiePAuJDp7tCwiupZCexVsEH+T4jolDbdqvb cabpWsCagIKHMGDBzurtiL2N8enCIddAMboPMETrOF4qxe+tMaKJa88L+xQAiCakmvC1CPoMW8Ds HRuyxIvKPJUDHDTAaY1pZJtyzvpKbNa6HZ/VJosWOIDiBimivaLaaaMdASqaquxMXA/Hm17EfPUz lQIVUDLnzVwGOGu/ZQ6m2b9nPQkmhHwrLqbjjzdwla4MX304DS6rC/MKUSPUQVgwjhb/EdgYY7Uv 1wKxPBbIzhoucgSMwt7n06rEfZynEMNc90UTLACf778DHzzwC8ynQcNKDJ516fhunHy291G+s2+x uT67trp3kTSxd8HUdKnWw8qAi+O3WD7555tfPpINhz766Zlhu/V69JDVCm/hPvPB65qz833tP6aO C+/KHf9GErtG3UUrzItVzgQnPVoULjKTW4P+rua/CQ7LVnSLGPjs1sHXAKl9iLLgA2knPxKu62Nz g1sUKng3BbLwLUcJYBQwh6ACcm969rBZ8liyPLs1b2fPe6DhcheSChawVkjLIIHqRgDvaepu7SIO 8lpixRH6kCcc6xHqvnU/pzGlei98/9/G/setDg6QdTi0nAcHhDwgMnBfDiSd9uhEEiO2AolJ7KGw yKTBWdhQMh+ECQ1FVxpG0PGMytPiosjoMd2sMHMtfN0gGSlJGdouFYFsJAfZeLMEFoSP78CZHIOY kyHKpoisO+L+xphIjfmxiemBorqkWEhshfATjgxj9sp4wuJ0sUbgAiMA9VdJQ16SRmFEo5D4hz3a PZN6bjweIQHXR9GJ0o62uuMq87i/PZawlLHEzwY1d0yWnLN9VlsnA2GJTNO5T3UqnGIyYeBCV6IQ i5jslCZxp8ZORjMk04QIEF/TQFPKiSDQS1o4D6pAJOITg+MkjBNpSUVbplOXGknELv8B2EtLwpOL jxLmF/1XzAhkNI6CNKNhLpLGya0xoP0baAcbms9RIjQ9hysiHmWgx4jGiXKbqdsm52jElHJqna/c hDvjF1Lw8cZ+T8EfFO4JTqSmMJOgKOpTwShTGFKToH8zqDixKUSFEjFXQWXlV6upQyb2q6JmoOID IACjAvSOCwi4lxyxekgRQnWR74QV1+jnRa/FcCDGxKdf5blMl/rzLBXQg10IQIF7beFDz8wh0kD5 xr+ptKBmXepjosfZt/r0m0BdmPb+GI9m0iUDh3rPBuqCgAN04AEtsM2RorMgLV5wo+zEWVP1Sdh4 yhCS9KRiVSnJWJPuU6q3I05t2VD/AQagJwIreYADcPAhBBjvNxcaL3nLa97zoje96l0ve9vrXve2 EpwS1Uwz5OqbDdCAAltKgQYMgAIXNMACSGgBBQps4AMjOMEKXjCDG+zgB0M4whKeMIUrbGEIr+S5 ifXRGSEr09q2oAKWvZgLcHOBFjSgAiJm6AFb7OIXwzjGMp4xjWuME/muFa4MK2dbDFDdDOSGAguo Le8YpFuq2dWfIlkyk5vs5CdDOcpSnjKVq2zlK98ysddzLD+3GlmlHGADG3KBBBDg4+6mIAK1XUB3 DUCBPdk4znKeM53rbOfWJXG+fqPoLOc6PfadUqNvwTKhC23oQyM60Ye+KnSVCUBm/7aVw0085Z0r belLY/rSq0UtfR0GyC83kqmKLI6iS23qU6M61VJm9IaF663p1rJLCZVTpmtt61vjulE4Zq2OjdLn oB5vfj1SNbGLbexjW5nVyeRwS+sURVnLOnq5nja1qy3nTS9xoj7j8Q1FbZhhIzvc4h63sZXNXC5L t5/Pht6k4Wztd8M73rLbNaf37Gtj+bnb9QMmqcnt738DHMvmXim6m023dZ91ofJeOMMbftVI05qa 2/40TL3t7a8FPOMa33iW66m16G4K1heNdlxZ7PCTo1zT9M52p+P665ddfNSD5jjNay7ugW8Z5Ez1 MMIDrfCUAz3od8Z24Hp9Jm5vy2ri+8a4zZvu9FPj/OOOTreXe/5zSgs961qXMdGvaW9udi/fSV+6 zJ9u9rOXOuq+1PnqKG71dkt763Kfe1O67tCW7xiQHygD3/vu978DPvCCHzzhC2/4wyM+8YpfPOMb 7/jHQz7yko/8B0IAADs= ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/Synchronous3.gif R0lGODdhXgHIAMQAAP////f39+/v7+fn597e3tbW1s7OzsbGxr29vbW1ta2traWlpZycnJSUlIyM jISEhHt7e3Nzc2tra2NjY1paWlJSUkpKSkJCQjk5OTExMSkpKSEhIRgYGBAQEAgICAAAACwAAAAA XgHIAAAF/yAhjmRpnmiqrmzrvnAsz3Rt33iee1Xv/8CgcEgsGo/IpHLJbDqf0Kh0SpV6OLqsdsvt er/gsPjEwRbO6LR6zW673/C4fE6v2+/4vH7P7/v1BGUEBWOFhoeIiYqLNQWCg3+RkpOUlZaXmJma ZyJlnIygoaKjpKUnhI+Qm6usra6vsLF3gWaEpre4ubq7MI5YqrLBwsPExcZqnRyfvMzNzs+JqL/A x9XW19jZcrSQ0N7f4OEzviLa5ufo6bHJy+Lu7/DQ0iPq9fb3+Hjc7fH9/v+gyFHLR7DNg4MIEypc uNBAwYd+2NkCGI/DAgYXM2LcqLEjRwYUeiygSBLFvHIQU/+i0QCgpcuXMGPCHEBgwAQOGVTq3CaI X8lvG2QKHSpzAIcHCH6WFLgzJQGWRKNGXeDBwcCmTmn5VAoNqtSvMhUwgMDV38mrWNURCAq2bUwG DtI23Tex7LMCXt3qBQDhg114TOXiE8F2714IVgU/lFiDwl9EhLxCMOx27GNwZ/V1QKtY01OXeSlL hduZIN1xmyss4FDBVgEECA7Alh17tu3auGnrvr07N+/fvoP3Hg6cuPDisAuzpGCAQ4QAoocm8JD0 srxH+ghspnCBgAOyBRp8GE++vPnz6NOrX8++vfv3772yrEABQIMF0YcuAF+6HmMZhGyXAAENPEDI AQ844ED/ggsqyOCDDkbY4IQQUihhhRheqKGFHGbY4YYeJigfABQMYJ8C+Q2lQV3W7ZLZLKkl9V05 NA5So2s35mjjjjjyqGOPQP4opI9EBllkjSOWCABGKQo1gAac9XfNaQAK6N0DNnKiJSFbdtPll1yG 6aWYYI5pZplokqnmmWueoRwAFQhgH35NyrQZiy3iEpgdIjj2wAEEKLAAl0cWauShQyJqaKKMLlro Zy1N1oCcCBhQp0wTjCQlOv/FgCOZWbYpKpukplnqqKamiuqaoV0a1QAW4JlnKS/ySWiWjiqqa6O7 5srrr4UW5qpUsKK0qTZUehoqrqqe6myz0K76rLRgtjqs/1ACVODQrLrsWYePn/oqbq/kAlvuuDWu delG0MWE4ksKGHgsJQkc1AAbBgw6R6e9eOkvtQBPK3C0AwfcpbWGRcDAwhLIFNp+3OpwgAQJImZC Ao65UOu3txJ67sfmhozuyEYirFcElrY0AAZ8EQBAAgtosEHDLS2A5byREJABoINA0IDOZ2iAwBUH 7NuTrCx47HHBTBPstMFQsymsaBO47FJQEhQAwAINPAzf12CHLfbY69GzAY0JriVCBwhU0At2s4TL rMggk0z33Y5Cmp+SVwOQNQAKdA2TAhlUYfjhiP/wydlcps04247tqxXSK4Cq5bJPNx115pyParJb Vb+Etf/WFz2MZcQ2ELIBoWn/0gHGlJewMR24zm337XXnjreRU1MmQAYuYWDiBAUI0IHgL0GM8x8E LJA1AQhQoDoBFHzQtrFwJNuv5Zp337n3m4v6uV4blG9iSxdkADMAM7sE146oj+NdGRhAggAHDEDp AAc8Jw23rTQKl+5wt7sC3k5d1yKWBUJVIH0tj2OyM4FrtjE5+V3uguDL4Pc2GLXxJRAAsCLUdxwQ gZHEL2mhClMa0lU5bmCPdh2r3QBnaEAaisuDCSyWLSgwoBk9EII9kp0Ks3c0C/5Lg+FDohKjVZjz fRAmm0GJBBaAgLTF7oTMGiIaWKgCb8EwgGC0oRhrSEb/IukNh3W60wgWEJIJVOeH27gV/OihRTfw 6wWWWxoHl5jEPZpqRA0IAAXolECfiYmHBILAVrAYxi2tcI5ddGGU7BjDGBLwkmNcFCEeUIZOevKT oCzDmyiAhQYk4IMrqlEFZHS6ScJxaZBEiSs5UUQAYQ5zfcwlH0vVsw+E8pegTJKJ7nMtQSalSxng QORiychGXoWLKfDivuQGy0xas4yE6IsBaCDMJRHyUgvYmRxJoLRXtqF2sXRk9ipoywvqUZd+hOeo CKBNboKGRMN816UCIAEElJN7zYygCgcCTZNIUh+VxCQ2F2qoes7iTRUY5jebpIFtBRFcs3ygDE9R x3PW/1JZ3IvnLkXaJW1e8RRozI8AzsajIR4xoOTEJTKYeYr/QXCjlrymQneazQ9sk08IfCIACBAB t1kyRx01Jwahqc433FFj/3rnSOW5RBuZVFkppQw/B6Q0YLwUpo2sY0FPcdC4YVSnaCVjT7eZ0S1m dS8X0ADPqhnTLCp1DRuVYFLx+tHtHZGkVAVslkx6Utn1rk4EkMAv9JhCgII1i8+kqQRt+kWc8pSh 17SFQ7+ltzodgAENUM3cYInUtuIMnXhqqh3ZCdKuujawsNWgVX1a2Ji+dSgRmMAEIuCAn43Wro4F azkJKtkIpgKhZ8WschW61hfGgQAfKJ90p0vd6lZXAf+w+WlySXvWu+L1qOTcKzL6isdbxlawJO2l Q2pLjy649rcrXOpjXzvT2kozjmC0XVovS0DN+tS0E5REGOFb1396V76pFe8jPcHemLoTsug97+Zm u61eNFhjjM3wFuUr3BQS175lBaAAl7tf3TUXwM7tg2UZ217gHpiues2o9sobUglPVbYFIKynLtyC 92r4S8WNH30faV/KTjO/MC4xiRnl359ylhIDznCBG/ti1MZYcgy2oI9vHGHvUfjCi0ydlN8JZB5f Zrh4DXJ7j2vWEfNXyf2l539RDGD8jpi7Anzxhs0YXhmTF6o15rKNOafeMJvEzC0MKXC/2mE11Vdj Rsb/74qX/Oa7NZnOUCYwnsOqZysLUcas3d6Wu0xqg315x1zA4Jg3zF2YovnRPQ4xEAdc6VrT8MRA hXJCWVxaPe/5onT0cy2MqOpBG7tpvUwAbJATnGUf59nGoY2zp03talObNgEd8hbVXI5IP5eaeYWz uEsrZ7KZ+9xiq7NcPN1nLCvDzHmE8LFLzUtC1AtE+P6QvkOUb37vW0EY+ACiSfJqIkOVzSKm9bht zWRPLzythKheipeX108bbdjt/Ou8N15v8wr64xecgF8GThFtf6LIizXrpBnO8nJJueWUjvjIlcru YLvb0NGMqrxBzvEyj7bnNiaAyEkOkIJvG8QI/xaU/9z88Jj3OrkwZ7jMJ35a8NqcJxj31GYcEpsA Ap3nZ4IwLsGe3gJInOj/MDmwo+ntdaamqBPgKgIalKC6153uC7q73vVOd77bHe9/97vf8w74vAMq pwSOupJFru601FyWN4e3dqgXgUSKQDzozrzmzcOA12r664KlnsAZafSTH3wamqFeD2/2GmgzO9qv j73rjyMeBhyJrohXPDYZ33isVLzdWO9GlQiwygIsqC5Nr7QCPmD7sI8a9LE9O+llavAet92pk0fk glTh9JYvv/NCennyr3l2mssxwaDOMkjvpYBtIiABE6E3vb/fcanK/7w2Gvr0B5pmpKN+1uN0dN2n U/8LwHy3t3Ljp1aiR3Xz8ntX91x/lmhiB3nQh0T0N2oaR3b4Z3Yjt39jAmv+k3K083kJyF+BYoCI J34DuFA7NHN5UCAMEYMyOIMz2HkCdn5XRkHqh0djdnUayEcF8H2et2o/WHZCN3o1kAEesYQfwYRO 2IQcASVaUHprZ1BJZ2c4ZXq6x1/0N2lMt4KXNXWN11lC5TC9d05WR4EQmHWANoFFKGEFaHsYWGxv WFUcyG2nADxlOBQZkGrUJ4DWJ4KSs2olmEknKIcHyGKFWEAtOIZkuIcvkRM3CD/oF3mo9nJ1CFhB yHxDCF8V6Ef5h4S2pIeQGBNSmAVUOFYSJGtYWEn/WriIt9OFuwZ1sGhiCziGpFiKkXiGbOCAakhE bBhr9ueD98dHF+hxgZYq0cUBG8CMztiM0PiM0hiN2FUpdih943Bbl9KHW6B2qig719eLJAiGOtU8 KJiI+tUoh5UwE0ABEPAAP5N7u9KIeSACuaiLLbF0OYODFqeD73aJv0WBmahLQjh2RJgqj5gfnxVa g+JlhKB/8nOP+JgTU+hh/Xd6dPRFuPeK5MiIsrhdCsco2vgViWUGlnaL9TiSFMWAbVZQquVRwYhC wyiQxQiKcSh2z/cs61gncbVeyHaHiFYAEqmLfYh2DvaB1ReCLHmRP9aRb3aMQaKCjqKSYMFPDmBR /79Cj9lBlflRlPtIiTn4XKHWYz1Ik5+YRAXZJp74LAk5LASAAd1hag8pisoylKWYSqhokSDYQlf4 bekIiLUYMpvYfLP4hYuyk66yUlLociipD3YJidw4iVX4kr0YgZE0kwNZVTc5h/aHKiMiVBUll9gI IFwZHUVZkY6WlJUTjkz5c4GJSVD5dEk2JG9yAAHAAAdQTP0kj/lVfrOgM/gIE/rIPPwIfGK5gxiW eJkpUmnpfD/HliMiEg+QMq4STkXDlnMZlMAZnC5BkXnJf3sZSX2ZPYrIfZcUAcCUnqG0QHaziR2g nvAZnxyQJJZCTMMiSAPiK2KYktwJGks5a8xEmf98FZMS+F5mWTATQJ3RcQBlYD1YiZAKIJ8Smp7d xCQJtHTYOZqe8ph7eJrfiZSAqJSY5ok2JHS5eSntGAE3AyyFEJ359EEWw5ta+ZulKRpeSZxg2Y/H +Y8Wppx7NAEn6ioFwAAVEAHQomlI2oORcU9KYp8J1AFDuDQQOYr9mY9G2V7gqZri+X8amYU2BKQf NAAfUHmaFGVJeqaq4xImIicAEADtkkAfID0NJ3G4WKUAEJlfOZkKtkWWmXOYyUEJKlQN0ADHpJaq hqZoWqN7IQDsiSqDoKG9oKiG4aE64I14eF/YR4gGZKJl6ADniI5Kiqi3gphPpEPhtiO+CVQcWob/ wxkRxfmA64ScZOmjugSmZbgAHZAYhiqqvCqpbhEAD6ApBhmK2rmqQuWdlaqXWppz4+lU5QmYImOr ZagAVROVZhqq2NqWe7gfMtqYs+AVFbA3zdgAMtEAQZqP/9mlAbqntESglxlFoHKg0RKofHGu1zKo Ppat+sospNoWRlE+9pqPg7OiaPKoHTgOpMgybjoATvQVwHqiDfAubDoAwWo1LUGpOXAGEFAGGbBe aYAxl8qaj7YZC2AAFSsml8Sp9QoAlcIACWQBKwqS+xqq2uoWBzABLhEBKGKbQ7UWVOQSNjObMwpU XsEyCVABEkABCNAWVfQSFxAABxABLYEBD3AB/zjbnbw4UxZDADebFL7lAAiQAVfpjzgXY9l3ASSk KUdrAT3AthXgtnDbtnL7tj7AthtwohBgmxwAAQtwta6CAKPnczOLqDXKNy0RFMSzNV2Dm0BbOD8Q t0CwAR8ABWzbAcHzMnESABbQFgcwGcEDtZ6LAQ5wSi/RAYZDI6tjI44TIGFrILHWrJQ0eaL1HYSA eZuXMhGQmxgAHR6QQ3GJZLy6r/36FaHTN39TOoOzefBxuU2ruUz7AE4LAJ07tQ9Aui6hvN3AUptk FSz1OhlzccJHY1ayfXjoAraat84LAL2bQBfgZMgYvJpWo8V7uACQuIFjOodQtC8DvQFwAZwLAf/t ki2gC0Jia70Xm5eDwDg9cy+PEz3jxHaCSEEBQnz+dHzGojlbdL626b/q+0E3K5vwW5bDOxrk2hIK ILVZEwATgDxAyx+pKaD4lbAv4wAtsbltkQAOcBEGMlQQwAATgAE4/E2SqGKfUAEKQAgGoLOB0DzU YVSu9FSVYwtW0gD80WLnQiO2mrsAYMPrey0GQDyKNrihqqjUqlslPDETIAEMQK0lDDiuqyN1RQO2 QIqnNABaw7J6kQALQ51D+jIs67L+mbE0ksRvSwFHTAAPUAEQ4AGEXGFbmpGDWDTbYgDaxX1PYwv0 KgDQcT4N6yrAakKFGcK/Jakj8BIM66ZDxab/2cJWrEZQgLCkVXqjfIArBhAb1zkIlQIotRxgdtSn h/aX8ScykCCtuvgAiBjGoqxHIzwsOmQLBwCvBfAAZPGNiWasT8SNgpxTwRxsqxnBYvmFrRwtE0HM pegAiJjMiFqzT9QAjVoAbKRGD4ABisSuaCgCvqoXrfrK4BJg/vLEY5k0yWjFLMoJ5AyJBUA8f4XO UnbPYOEB+iIC7QelItBb0zxwhGLNH4SsqXNL4fspJzU730yLnYPJCioaByBdQhGuTot7Cv1bhcHB kBhFsgSvlgfD5Lmd/bmYRLzPF3w5T+zLHIWM23zFZ1DQe0E9LhEnQ9USctKHbxorc9jSXDIi/3JC AGx6oRc8CGoUHuBRvquIF3aKsY3A0cvg0SKaayEZzgAzzgG7Fx/wEk371gDwtB2QuOhzEIAXeHpN eHjd13vd1w4AUQ3gjhbrKgewTMKnRpZHZZWF0Qkky/ps1pbcMbHKozyYgUM90A/Z1noh1y0R1+gD ACzzEhagvGATneRqoa5iABvgT8IXIIRCxT6dcY59LXh5AwZa1l6HQrB7Tgg40iJAr9Hh2dI7GXJt AQFwjxcwe7DH3L/RTU4KTkYKlgVweJDAVox9ZAzdFng6y67Y05TtVEB9ZRmIN8PM2W6xAU4UOADw 1gHAMqPtElC9gqNkIqpdJwawTACFZnI8CP+1PSxi3d/xqtvL0s3pCq2uGD5s3SQKcxE0XL8MwEn8 tABOFCtbeEb4dCKuogA0nWe3h1zqDJpZu5Hg3VLYJ6sAjdkCLS7dYNR7MQALA8gtwQC1DAACwADn kwDz/INesbPQIQLglKs4uduzDVI4zZ0aPdYDntllC9LrNIuTXTAkzZ3G3F4JoH46tcyiMR2EuWKk Rc/fdeTBqdPezdNRzsswGb7JGWjmXdTo/UTm7CVS6BcGmUvbrab5jaUeZ1de7WB3/hUBTmyULdBN LrLVt5EKPgIu/kQCAAH5aQtzno4pq+V6waDf+5f97NEq99+uAtn1+N1nvpRQfJnU44Z10+L/J6oA hf1EH3w5FOkBnZlB2y0Au2UVa/ndRe5XnH4pt73RS07oH82KfinR+gXcQpcyeQuJrU4jDNCgp3pJ 9xwBG5AB1liWW+Z1ZvXnUtHde5CFJY7mlemufpoaq6EtIlDLt7Fs0pbu6U4bFIC3tinP6p3RmMMz dC5hlD4TI5BMHOBb17rn/G1BdtnJj93nBvXrSPXRhr5nZ3sltWva8A4AHHBKxA1OEkAkFJAgTsyb IxMIUPiEGgESPoDdAoitKQji1pIAFY/Vrmrm4Szq/yyB4+u6c/dvNp8gFwDv6dvFl+KpuGQAxxfr 3zN4RI93cYGl8bevw2pEQ4kBcFGGSS7g/5nO5MHe2704wcVHxfyVxRvcEjxfJxbg2o/C8SAjxth+ I4fK0gg2hoTQ9On7RGTe7aD+8j8t7gc/8/IKNfSKvlw8LBV7KlHqkMF7fiibpGqf6zTWKnwP9QZP Vghv5l208D7tJ4AiKIZoq6oOAA/ut00CAdU6JCHJXCH8iqZn8h++6TGR7H9zzSPu7aHuzygugUi/ S4uOohxwyGlCh6Bo9gIJeWe69LQNEzlGKdAL90aZ21TP21x6ZNC6U7XfJCLXP4ry7LY4uB5m4kg6 5NgOQKFRLy3h/azf+nMPZHWv5sJIjPIk3NeCyKBc55Y8UqNPiYWvpIf/wDR2j+wdKUtL7//HDwJE IY4jSaBmaaKtK3JcWtC1fZekmvJiv/uCQMLkADgik8olM8noNHw5YY83BWJ/Wik35+3qfjQr+DvO 4tLpoGbBcDPajLkF8r678/i9vr/X6KgJ3nBJqZxdDZrEjL04vkydIEquUFpOFjVpbiIlTDgwlFUi nhlejqJelq1+zZy4mq2alj7WuuQwPDjo8u5+WPQG7w4LFxMPM7DYLrd4JTZbKdeOxDQrEq5kUW1r A2VygidtbEggXBVqo291r7O679SIxbY6FxpeY1NdfUS8+8fewqdIXaN4tK4RqNaI2a0gpx5Oirhi goIBDBkqiCEDWqlUpGZ5DKlq3rtIk8j/zKN3z+FFjpLu8UP5r2S8lsvqHYJmilmBaoHwreTWTug2 Ag0qWKigdCnTpk6X9psBT11RMETZCSWpNYyQgjMPRhNo0KGZAvymbk0bUKwagodGSRWEgpE0hiZF SoQI1yZPsilPddQrOOJXq5ZgzQTJ0qazeTEDq9Vak+8jnK60LLRFbeNPhNmGYmVXli2hlWiHUg0N urDKmm/9dWl1jy1BQ49Zw7ZGGodbqS8781ZYty+LvMbxkqQMyeRL5DiRD8a99/C/1mGG253V5bZ0 VjaUV9b+Sh/2Wz5JB1V9tV3j3fC8qqwaX73o7q59sz43W6y9so9PR2YYcLv1dl0ig8zF/0FmF901 GHSERQIeLc0pRkpZDkYXoGwnUbhVhRKatl0EOWno3YLgxdaVTpX05dOAcn22noz1ZeNeWPrImNpq 65V4zn3XuZMiczb6aFtUkNm3nHvf+fjaQQMJR1mDx2EI4WJSDnmhRM9V6ZF9UxZXUm1jKWeZF9z1 aOKJIO610Ht2nUdbjPTtCOCS7wGImlV08vglFvBVlxWBQxr5SpoAxXVngQYdKFdCCpY3jV9dVmmP hFMKiQpkDz6YJCzFlfhhmSGeOSJih86GIiTiuRlNdi6iN2eds4qy5I2nEaXjjOx1l55vHprJ0aA4 rhBTh57qdmdrTjbaVpR8gUkplbJdSv9WhyFxOS1eX07aqmRjTgitdqUSm2RpqqL0DGaRphAnf7Lu Gu9oNvo6XxV70kqjdF5xpaF+Nb5rrTP/yYRqsoo2+Wuzazy65k3dclpphGVimm2NmUoLl8HUIZmc l6N+ZsZZp5o7GbqWjfdmi5zF2m++s7ZHYIj4FvXvy+WGCu9YHo8rbMt2GttxrwfbmrCBXSH4LGMQ ZwyRpRQLrKWmFUZsZY/RFiwkseEurbEUaJq7H7ouPbnieJq5K5AUBjzwgAEiKGDAvwgkoCsa+6FX r90N2SwvZn7Kk/VfaAwb5sD9AIqqMsru7OrRbzlKl7gmVOCAAxWgUEHdezUAgcUjXQn/bcVUB4Kx tk5vzKHQAH0sJalfm3rsoSarinKrOz0Mq9o+ZHAACgcAQgECBnDwgAkSyNA5AQZgTmfMeYcsU659 85lngL4CybPXYcmJs1lHKi7gi92rzCjSciltVwkbGEpBHARIsEABuxCwQecHsC/CB/vz37///wMw gAIcIAELaMADIjCBClwgAw2IOMHti3Yosl2YcIe2jfAnCPkLQgU+0IINGOACLWiABSjAwaegMIUq XCELW+jCF8IwhjKcIQ1bGIrEIWt8ASsfYXS4CEgxJgcbiIcJKeDBEWgghCVgQAkvM7YnQjGKUpwi FSdIMsVJkE2/uR2Lcsey3Y0AeCjA/wACCFCBBQBCAqGgn/0ggL+CMC6OcpwjHetoR4SFj1o+BIrR zAc5Z8nAYZXJwQFiUEb4IaCQD0gB8giQi+WZUJBVnCQlK2nJS1ovgpLs2hYr2MULJgpBT4tQef54 x1OiMpWqXCWTMhmqUBKJPAo7X1saxq6AxEZLlODQJXvpy18CU1yy0yQUKWi2TfpAd0DB191YYkpW QjOa0pxmW1aHm7Uoa1E9REj6eKJLCF0MmcEcJznLGUVX5ieLIOvkMW/ZEwyCsT+1cSYsqWnPe+KT joYK2+LiqM02DcSWQcyl1ix0NnMiNKEKHdUwrybO7AC0na/64jKtgyN67jGfGt0oR/+xkcdR+rOP 24RSIG9pjYJqLJwmXShLW2pOdPpLna6L6LrgBM+KyrNIGO0oT3vq05N8tJ+M+2cnRSm5lmzqmyp1 KVObulAS8VOmk2NnTVdGNEdZdCo7/SlXu0rNhl7zqoVznB/r+Z1u3kSpzVmqU9vq1l/C9CvfeaIx q3qTtAV0Q/NcnFm96te/hjSuahHrz8g6UqMCEamjQWnpHvrWx0JWmNaM6UqJQ1VZWrWvpckqGbYK 2M+CNpuTLQw2EYbZsvrwUQdNK2M7wtbIwja2IOKn2OjKKk+u1hHv1Oxc9apTvmY0tMIdLouCWtqi nfawkUssgxZrptfKNrrS1cwV/VQs2YfRFLO5+4BGuuvd74I3vOIdL3nLa97zoje96l0ve9vr3vfC N77yne8HQgAAOw== ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/Coloring.gif R0lGODdh2QCRAPcAAAAAAAEBAQICAgMDAwQEBAUFBQYGBgcHBwgICAkJCQoKCgsLCwwMDA0NDQ4O Dg8PDxAQEBERERISEhMTExQUFBUVFRYWFhcXFxgYGBkZGRoaGhsbGxwcHB0dHR4eHh8fHyAgICEh ISIiIiMjIyQkJCUlJSYmJicnJygoKCkpKSoqKisrKywsLC0tLS4uLi8vLzAwMDExMTIyMjMzMzQ0 NDU1NTY2Njc3Nzg4ODk5OTo6Ojs7Ozw8PD09PT4+Pj8/P0BAQEFBQUJCQkNDQ0REREVFRUZGRkdH R0hISElJSUpKSktLS0xMTE1NTU5OTk9PT1BQUFFRUVJSUlNTU1RUVFVVVVZWVldXV1hYWFlZWVpa WltbW1xcXF1dXV5eXl9fX2BgYGFhYWJiYmNjY2RkZGVlZWZmZmdnZ2hoaGlpaWpqamtra2xsbG1t bW5ubm9vb3BwcHFxcXJycnNzc3R0dHV1dXZ2dnd3d3h4eHl5eXp6ent7e3x8fH19fX5+fn9/f4CA gIGBgYKCgoODg4SEhIWFhYaGhoeHh4iIiImJiYqKiouLi4yMjI2NjY6Ojo+Pj5CQkJGRkZKSkpOT k5SUlJWVlZaWlpeXl5iYmJmZmZqampubm5ycnJ2dnZ6enp+fn6CgoKGhoaKioqOjo6SkpKWlpaam pqenp6ioqKmpqaqqqqurq6ysrK2tra6urq+vr7CwsLGxsbKysrOzs7S0tLW1tba2tre3t7i4uLm5 ubq6uru7u7y8vL29vb6+vr+/v8DAwMHBwcLCwsPDw8TExMXFxcbGxsfHx8jIyMnJycrKysvLy8zM zM3Nzc7Ozs/Pz9DQ0NHR0dLS0tPT09TU1NXV1dbW1tfX19jY2NnZ2dra2tvb29zc3N3d3d7e3t/f 3+Dg4OHh4eLi4uPj4+Tk5OXl5ebm5ufn5+jo6Onp6erq6uvr6+zs7O3t7e7u7u/v7/Dw8PHx8fLy 8vPz8/T09PX19fb29vf39/j4+Pn5+fr6+vv7+/z8/P39/f7+/v///ywAAAAA2QCRAAAI/wABCBxI sKDBgwgTKlzIsKHDhxAjSpxIEaG2ixgzatzIsaPHjyBDihxJsqTJkyhTahSosqXLlzBjypyJkiXN mzhz6twJ0ybPn0CDCp3pc6jRo0iTXiyqtKnTpz0BQJ1KtapIplazan2KdavXr0G7gh1LlqjUsmjT RlXLtq1JsW7jyoUrt65aunbzjsWrt69Wvn4DTwUsuLBSwoYTD0WsuDFPxo4j34QsufJay5iBUs7M ueRmwZ87Zwzd9+xZ0SlJBz6N+qRqva87x4add/ZI23ZZuzUtFPfupbmP+t6te+nAssd7F2+NUeC/ 5/+GTwYedjlzbQCgQ7delXf16xuza//fDta7Zu6oxY+Pvhf9ZPey1z8/yFx6bvnsV9KvbD8uS/Xk 3bYfaPDxd5pz2xX4kUV19ZdWVwXlxGBU/TlIFmEKUhihZwBKZ+FXjGUo4YDhrSciSR/+dSJ13SGE 34ohpdhiSzAK9+J7Br5Uo1EAarejRzI6ZduPYd1IU5BJ+UZkkeMtyRGSPDr5JIgD+SilfoVZeOWR oyWHE5Q/pbilTLqN+aSZh6EJpFVlnlebmgtShRWcXTZIJ0h33tZRntjxOSJXQq4Zpp9HEopnU9z5 CaZLi8YpHHqKGsqopHryGON37YG42FWYetXoW2FVOqinlKqUJ4bKqcgWnSIS+umepfb/pNOJrsZ6 ZoNfupYqV7ZySeaKhr7ap19X1hisrcJKKGtqi7HqpXGJLfnjsct2adCwje2oGrWThjehYzBKG2W1 xn2bra46jpuutSSC61lMksZWZkKWKTikuozqZ667h5L5KLnlbhjtlIL6iy+N3u4L23KJTnfwe0X1 qqx1G3r478W1scguQbNiLNzCzwbMca4elzxXwu3Ci1SyEhu8scBErdwytifrmzLAnQK6Gr2+mozo zPDy3PPDUAGdb5/XOuwzr/7NW2GSRoe3aqxUR+0tWsimuVemh2nNdVYse30h2IOJfSHQyWq8tKY/ d9f21EmSbfZdRBf9NnFubtVr2kd3/+ypkFanhibfBUNdmllj3/0mzn8rTpupgRduOIGuRe6o48S+ uyrT0bI2MrRttUx4xwjOFzLdgEdWeoD+FW35kUb+xnm2sYfuuuq1bz67Yj0meHp5g70Oe5M2J747 7x0m+nvZtxuI2OfMHw8erGmjLTyNcEK/afBZqv3l8spyP7ByHxo9utJR2mf+9Qjzeq+c7DPLJvii Nr9aefRLnjqB558JmPaYm96jIJQyAM4qfpn53L4o1T8BIk1o3huVA1VkrvwVaoIUvBl2doXBFils gznrYPCSNpoI/kmEHoRZc7iFwhTCr4UwbCAMZzRDEcqwhvbDoQNvqMMA9rA1PPyhzByEKMAgErFZ RwSPEZN4noo48YlQjKIUp0hFigQEADs= ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/Triangle.gif R0lGODdhBgGsAPcAAAAAAAEBAQICAgMDAwQEBAUFBQYGBgcHBwgICAkJCQoKCgsLCwwMDA0NDQ4O Dg8PDxAQEBERERISEhMTExQUFBUVFRYWFhcXFxgYGBkZGRoaGhsbGxwcHB0dHR4eHh8fHyAgICEh ISIiIiMjIyQkJCUlJSYmJicnJygoKCkpKSoqKisrKywsLC0tLS4uLi8vLzAwMDExMTIyMjMzMzQ0 NDU1NTY2Njc3Nzg4ODk5OTo6Ojs7Ozw8PD09PT4+Pj8/P0BAQEFBQUJCQkNDQ0REREVFRUZGRkdH R0hISElJSUpKSktLS0xMTE1NTU5OTk9PT1BQUFFRUVJSUlNTU1RUVFVVVVZWVldXV1hYWFlZWVpa WltbW1xcXF1dXV5eXl9fX2BgYGFhYWJiYmNjY2RkZGVlZWZmZmdnZ2hoaGlpaWpqamtra2xsbG1t bW5ubm9vb3BwcHFxcXJycnNzc3R0dHV1dXZ2dnd3d3h4eHl5eXp6ent7e3x8fH19fX5+fn9/f4CA gIGBgYKCgoODg4SEhIWFhYaGhoeHh4iIiImJiYqKiouLi4yMjI2NjY6Ojo+Pj5CQkJGRkZKSkpOT k5SUlJWVlZaWlpeXl5iYmJmZmZqampubm5ycnJ2dnZ6enp+fn6CgoKGhoaKioqOjo6SkpKWlpaam pqenp6ioqKmpqaqqqqurq6ysrK2tra6urq+vr7CwsLGxsbKysrOzs7S0tLW1tba2tre3t7i4uLm5 ubq6uru7u7y8vL29vb6+vr+/v8DAwMHBwcLCwsPDw8TExMXFxcbGxsfHx8jIyMnJycrKysvLy8zM zM3Nzc7Ozs/Pz9DQ0NHR0dLS0tPT09TU1NXV1dbW1tfX19jY2NnZ2dra2tvb29zc3N3d3d7e3t/f 3+Dg4OHh4eLi4uPj4+Tk5OXl5ebm5ufn5+jo6Onp6erq6uvr6+zs7O3t7e7u7u/v7/Dw8PHx8fLy 8vPz8/T09PX19fb29vf39/j4+Pn5+fr6+vv7+/z8/P39/f7+/v///ywAAAAABgGsAAAI/wABCBxI sKDBgwgTKlzIsKHDhxAjSpxIsaJFhdoyatzIsaPHjyBDihxJsqTJkyhTqlzJsqVHgS5jypxJs6bN mzhRwszJs6fPn0CDltwptKjRo0iTgiSqtKnTp1BbMo1KtarVqFOvat3KlWfWrmDDij35dazZs2fL ol3L9qratnDjJn0rt67dnnTv6t0bMy/fv4CHAghMuLDOwYYTK36JeLFjxX71Nn4cOLLdwZMp87Vc F3FmzXc5x538GbRc0XAzlzbdFjXb0qtZo3W9djVt2VhjSxapG3fX22N7ZxTu2y3x0UOLpz3emqzy 4Mxf63weFjjY6BqtU8eLPS3L7tuBav/fCn5j+fBez19nPHykevQ2x7t92Z74e/gz5VuFnd3kffwu 6UeVbf35JyCABv5FoDaYMUjSQAgedeBTuhFlX4ERBjWhU/9h2F6G4nWIVXwdiQjiUiZSSFNZKZ7I 0YZzMQgcXS26OFyNSKkmWmQwgtijUbZBiGJ3OGb4o1D2JSSVjSsWWZST7jEp05HiqSilVFBWaeWV KlHpU5YJcnnYafR9tOBSyYkZZnMlhnQmmg+qKRhybd5IGmakyZidhf7J6R6YOfH3oYN2DrpTg4b2 6SeKqZVpXmNMeeYhn4ouWiKgN70JE6R5Ekroph4+iCllXuJ0JqR7mpcoqoM6Z2mqtcH/+Smnkq56 Y6iVWloqiWY++uGmnc7663crjbpcrG7yVmyAXcK3a35RJtsss9M9K5a1fcUpq6t9RXcoddgueVmu xv5WrrjjatsqbuEuu9eFuLLW7rTv/rkuu+fSu5my85KXb0r//tRvawHnWpmNA6dpWMGzFUyjYwyb 1W+tvULs47/wPhZxdRirq/HGXM0rHMg5AjjxvShrjN/ALBZHclUJV+wyejE7OvN2Nb8Y3ssU8uwp uD7PxXPQI7o8NIJEP/ly0gP6lnPKO+MLs4tMf0ly1fthbSrIWs+nWc5de/1x0VyGPeXGZmuVNpZQ ra02xBG7rbbcZDFMN3mJsfyqqoXp/713vJIFfHd1hJ38t86AiXw4e5t1vLjNl+U7OLKhSf64tJGX fDnmp507eaOdlfv5aHdjOzqZqRl7emepA7k5wAQ/+bq+Eo+6+m4NIzn7d2GX+rSztWv48+6wXwsm q8TT7q+WUKs68rYIcyzwpdI+Dz3V12X5JuJ4vujZoZRemfSRFTr67bDIIy+x62b+fiteyiL+M6Lv +9r82xIyahz80WKY50G+Ut+1AlgoB4GvPt/bU7C4tz+vKMxT/5Nf+rxTIFAh8H3d05MBJ1Wn+0mo SN7yH8UkxarwDbBVd4JgfyYIq3upBmYgZMxnJjgVCyXwUxSc363ohyoWWnBdgmobjv+COEPAFW99 KFQhDf2nwlAFSYiBMl+ZOmS2Tlnwhz1k4g2TyDmhmapXLfNg/5CYqhuGj4cVHCHfhmdEDdXoVJAD TRCjyEEgNmVCsRGgGBdWwek5kY2AdCOvZLY9ObbQgWusj8yAlKLypex2s4mj/ZRWk95kUJLJm+Mi Q1TJ+HUxeS7MGCeh5cnrgXKGx8GUfqz3yVNi8pXxoeKKQCk/YgmMihfJpS53ycte+hIiVqPlotwn zNdAspiMRKaaiKnM4DVTfMd85i2lJKRiMvM3bdzcNaVnzWhyJ5Cz2ybe9ng4ceLPnIXzZnrIuTd0 SrOB76SaOuOZqXnSs5L2vGd+8qlDz27100j8/CfvBIq0gBIUYAY9aN0U6qyEMlRUD92ZQyPqpolS tH0XfY47MzpNjjrNoh49ZEjl+MuSmvSkKE2pSksaEAA7 ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/TriEqu1.gif R0lGODlhRQAPAIAAAP///wAAACH5BAEAAAAALAAAAABFAA8AAAJahI+py+0Po5y02oszCFx7HBjh R07jWFYdirBH2CnuK5rc/cLbMu/b3IuxbriErkUzEo1J0ZLZcxyTMZnsxGNUc0/qcBW0bpFZmzNK QT/UqQbb/W5bL3G53VMAADsA ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/TriEqu2.gif R0lGODlhZwAfAIAAAP///wAAACH5BAEAAAAALAAAAABnAB8AAALLhI+py+0Po5y02ouzPiHsD4aI J5ZMR5ocgKpc95GpC7OujWvybaSz+NP1gqUdDcjyEEG+m1GnXIZavBrvis1qt9yu9ws+ocbkcnlE fpnXZvRYzY5bw/TwWXWv6/f8fu4qpZYR6Efx5NUCowikGPXXAzmR6EiYYCSjZJkpGYn558iJ4/lz uGL6tFhpOdLJmmToelizNNsa+ShRK+qK+6Bburm6OyyqGmvrU+qLfDskhvk222goHb0zF0F1NmfM 173xXRc+OG63VV7YVQAAOwA= ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/TriEqu3.gif R0lGODlhYAAPAIAAAP///wAAACH5BAEAAAAALAAAAABgAA8AAAKDhI+py+0Po5y02ouz3ryF0IXV B26liDrlaZAT6AJxLH+m3eI03fbH+gIKfzIfsZhg+YDFE8zYVDJ/JJzxeUQqa9DuluXsasNcCROc tfak1aybXL4SbeAq/IxserdeuX59NcWl9sBjNUOYp/DFRrWiBsOX8jKpUqmReKmoOcK56AmqWQAA OwA= ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/TriEqu4.gif R0lGODlhdAAPAIAAAP///wAAACH5BAEAAAAALAAAAAB0AA8AAAKUhI+py+0Po5y02ouzC0Fz/Gli 1gGlVZ5TOraX+pLuvFLhAduretMS13vwgCii0MDzCYM1Y8X5xJlCTmOVyWC9tI0cN4pkacXS79SU MCuAVekmLUqG14iT+dORYyPqOtu99IcEh+ZVB3hjB4e3wcaVQ3eIBlZYNniZZzk5GYQHybdH6LeV WJpmR9VDFKrU6voKG9taAAA7AA== ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/TriEqu5.gif R0lGODlhjwAeAIAAAP///wAAACH5BAEAAAAALAAAAACPAB4AAAL/hI+py+0Po5y02ouz3rz7bwTg CAUi+Zkns6KL6rVudsqIPYf6a0oinLvUGrjcUHEsJVG94gvQI2qaz8SvuHSsnBsq1xrC0n7Q6i2M RN9U0bKbebCx228xZotkn3dn6gPvUvO1xpd2p2YYl4VGp9U4AvPIAuU06HhlpiMZBBY0KGM5xenj GQFqNGo6x9jxabVK+UaTarrnV9q5czsz1+vru6YXF3a09XuMfNoJlJTs3Evbp1sY+FRMHX0Hqzkt W5127Z1NcrW6mTIJfD7Ojt5OHhoYjw053/W+qIUq7rPe57+v1ih73XIpopcqHsFDFvLJGcZu3sKG QhARo5NvIIWJIRUmYnq4hx8nQH9GQpzQBIccgPJYigQh7J3MmTRr2pxQAAA7AA== ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/Cube1.gif R0lGODdhXgG1AMQAAP////f39+/v7+fn597e3tbW1s7OzsbGxr29vbW1ta2traWlpZycnJSUlIyM jISEhHt7e3Nzc2tra2NjY1paWlJSUkpKSkJCQjk5OTExMSkpKSEhIRgYGBAQEAgICAAAACwAAAAA XgG1AAAF/yBXWSNpmWipnmvKvm7czjAt1/it23ze774gcPgrCo3EozLJRFZEgMFAIKVOq9ir1srN drfeMHj8LYvN5LM6zUa71+82fC6vx+90vD3PD4wGBAQFgYOChIeGiYWLiIyKjZCPko6UkZWTlpmY m5edmp6cn6KhpKCmo6elqKsCJ4AFg7CCsbSztrK4tbm3ur28v7vBvsLAw8bFyMTKx8vJzM/O0c3T 0NTS1dgEAycCqd6rquHf4uDj5uXo5Orn6+ns74TbFq/X9db32fj2+fz7/voA+wX8J7BgPW2uYrlb 2K4hPIcMH0qMSBGixYmqBlSoAMjQwI8GQRIcKbJkyJMkUf+aTBlNHj2MMCvGvCizJs2bM3PapOTS o8qfLFcKBTo0KNGjRpPu0rZxgEKcO6NCnaqTqtSqWGv29KkUadGvXsN2HQuWLEp53Z5mtcp2rdur cNvGhalxHteyeMXmNct3r1+9KBHOUzu3sNzDbxEbTsy4QCu7dwH3lfx3suXKmCVv4+hxsWfFoC8F 6hj6M2PTjXpSXn2ZNTFtBAwskIDAgBTXuFvrliXYaenfp+UOAjTAgIMHFBwckDDBAQNt9ICjlg5V I+fIu3NnTiqAwAEFEyQ4UACgPAABDR5MiIDgAJXt8LUjVU09uP2K0As4gDABQoEB5gVYHgEIrAfB AsRNd1//fRHRF192EJYkBQLgTdAAeQJmGOAADCD3QAIGdCdfhCPqwxRHhClWSEekLegiJP8RwAAE EkTwn4Y4ChjAAAkYmMBoDIojBZAKFraVa4JM8V0EEiiAwHskRrnUBBhMsECOWOY4wAMnjBeilMyM xiMDzSngGHYProQWLobBVsBsEURwgAFxSsDAcIe8+JsgFUhAwQMPFJDloOUt8IADERCgQI0SJPBf R3oWok0BBjxQ4wMcxsneo0HS9QeaQAUigGwPVODAjxsm4EAFB7oHKZitxVJBAgc0EMEEFSwQIqEB EogcAwkIEGABCUBg6gJndrYddAkw4OcCCAQQoAEKREBB/wMLENAdrCL1lmJM3VFrIHnS5ogABLfq qm0gnRZWQK4ItJdAtRVE4N+gARQLAQQGYCntjBLQZlt0bk1BqQP9QUCAvwE0QOOmtxXpkGOu5Blq Nw04QAEEBwjKKwDelfpAA18SghS7aRJSgZMJtJxAew7jusAB5ZpHgKrXIgDgxwYg4KdzsIFKErsC JGBrru59DIABCTDnAIItlpjNZi/thECcD1yptIYJPBBne+uC692Q0smqgMsvtyzvohRIAAGABkAA 6AFbZxhAhxI8YICyNcEym9we120eepYqN3C7pTioEoEYZBBBv4LjWEAEGfzZQIwWHzSafuqNjPlu Hq2MAP/apLdXK5cZXIBp5Dgu1wGCebKkzQMbXNBAzawHqEAFGETwNGlCp7liQtUlUIGlce7KulP7 MkCeAg4w5yTZ4UjxXXjjAbAAwo0eMGRWCskKLenkv0xnf0w+oG3uAhwwwQQWbMCAU+FH5JimTDow Bes7Nu3A5YT7U22ghDhGWOdVJUmS8QxwAAZorAIXqpvRanSAhfWKTm5zALtM9ovN7Wc9exNQbAIG gQYAiSiPMNvoyle6OBUAAempwAQYgICtCQB6GLgABZpjuxYFDxoDiECgjMYlCcxsaxxC2OV2Vp4A 3IwC9lIA8IT3CwdRZDi7G128RsckKA4CS4KgEbZwp6H/ACigAeFxEhUQAR0K+cl5+FpAA6CoRt90 ph26UNkCWEi+A8TpAC+L12x+pg0sFQdXF7CAvfYFgQswIC31c0gQIaDFeDnrjevDkRMLBAEaDkpG pTpVySIVj4otDhY8qsAKXXYABGxPhhEUkKpoZBsyZqk4NYqACfNDAFvVyDZIXE6cnoOyHwIjhSrk I9qEucqXAbJDFpBAA+gmoO1dAAM7lJum9tXD2HUriA8ApMvkNSNFXk5A6ImeBplIqB0tYD3sOeGI TuSbicQilc0cZ7wS0EX/yEiaChAW+4w2gQcoQAHqAZZAWXdDNConkt/Io/jyyUI/yql88TrAApgE wUNa/yCRi9zXIhdpu7Tc8R33oyRGYcakCTgqbhGAVu7KUwAF8Md5ySrSkYKiQFUqk1aubEAGaqe1 mQZoARgYwQWKatRCYYADkhII3/jEsp++jEniHCfpALkACHAAm27zGrrGus1GNsCO4TPIJLNKPtMt 4AkTqBzkmhoFCGgglwjAE4TW9C10YNGnVm1PchB1vAqyjkAaY4B7BIAABuSMncGEgAkwsLeTrqJ+ ZrNqyyzKVj6OrncitZdoxyrSB5T0FhcRgL06u8UD7IcCuerXC9XjJFvyrGmN6hfTrIWtoFmWKnV5 SUhmgU/NvgyCTENonyiptAD48QHMJWMArrYvmintXP8UyMByG1lZqTJiEaLTLDM1SyHQjla06B1r N5UVkkmusj0HlUCfAmU3AcxIbgOwbRkbti9MSbdhTJLT4fbiLZrc03gUZSECIFhJjVrKAg7QmZaM lhzDZsk7GmtAsLSEAAckMprQFS1lf3sKifJpfFblrHET0Lvzknak3Dwrm+ARC9VyLKO2gi0DDKDf aV3NiDXMEbX4owDrZolpToPaBnNCMcicsrjkZTDa5NW1tkmAx4Ojk9wSEDmEokt5AHCutbR7KXSh 9wKVNWYwUsinFf+4swpWAGjJSueyrpe99uhMECO8URAHTmmEE+L+wiyAjQLKgjZMz3rmJNykUI3E ftX/RhaNu+AGJNiZDoSfpZ3lgC/OVBBeg5YDMECCgjIyTiJF14ghHYo8CuICytmiMlUcWDlv08Uh FWJJYQHRy3pEtYqcYSZzV4Dntix6Zlpo5DbptjsB15Q8RSWCKS1lz26RAhrIgAQK0OOtBaAAEvCA CFBtZlSbO05oztw9kBmIE1igk0CtaI0uXTpb19nM+LbXafG8bgPaNQMOEEC3m5sAC3wgAxhogMDp asYLfMB7RSmwPXtK79JV+6cwdOkcTaWAgefIjA24wAXgpzoYnzrVqt5bX1uNWkJQYAHOskB4oCVr Vv5xxRhw271fHGP6sdoT9QMnQmXuycgRoKsZkHnC/4duJ2oK7uiUk3kGEvAqmhxQ3d6FcmAvrswO V6CVo+MPCCGrJXBTQORYowAGxHruc5s53ViXBpvf5aR4Re/sDwBWK9WGVfLa29x1Jved05pnhYAT 7IO81rD9NQAEwDap/cVArBsbMAo8R9kf59HjNyY3DFCd146G9sQHMOkoW5q8GstqK1+ZHAzhCHoW wGZ/xGqsC6A8pDyPwKpXDvSW032F8H2nzK0ULzpdtNYtTrWLS7vrGUf6nqtV2zO55Lu5Zsi+EEhd eEJsr4QD/5mS9d2fBTQAh2k/b/jGgM5yorihSZsCcFYw1z27KtbCt58hBNnkTnCBXJu5VGt3XreG Xv8RAHfepW7wMmVbRFgWkDU3h3y4lm+jtW+E12+JsFYKaEkBkyuOMSCO91GscnLo8gCSl084disc WC7EshEXEIK3BwGe12jf1BS852v/gQAaACztUXGVVnHjpDGXtoPQI0MOsCqVo3PlRlq1p3yMxHMp 93OZYGLvgmJt9R3vlF0XsFk+yGKAN1pKqGoy1muqkFY2FoRcFQH1sh85tH3lll4wqBwKBkjV8m5q OHJIOID7EoM1SA479REnBR7v9iE1Z3GWBnxqc4iBVH+BBUgaMGf5dnL2wjtsR4DphW5pdoBqEV5d J1gakEgjA3YUVV4RmGsjkHOSwm/VoGfRt4kHQDv/LohvTRhSJRhYcSMCsQiLgKeHagZE3MAmeMQV 9GMpFGB5TsJa86dgqUdp0ZSEZAV4S+iEL6h73fWLmLUyxnUAksUfOdQnZ7N342Rry0cjahdNu3QX 1CgINhZ/bYVUbRhaeOh95MUAJXdv5LZI6ldPUJg4nzJcT5EIzOJY9fIAW6RFx4hRikheMndqXkhn xhKAzeh2mmKA/8BmVLWFtFKA0IUuG5F0n7hPoqiEaPhRE1BHxYSKchc+7hWPGBCLuPdiJAiHaROT zdRYGcCEAph+nzd3/SBxC5FWkTQklYKGMzQzB1CQbZWMCIk+MHZrI1gBtseQL/iEe1gJUpiAKdZI /1+ojSDVjQgAWupBJf2nQbwEes43hnyTUoBkiDKpNuxYVvjjhrMYWAywkqOIcjBIdeaIUo+BQJhY TLUgJgnwVlCUYd6olsDXYRRgkS8zci/mhV4oiZXIlKIFd7uIWt9VkeKFkZWoTRRgAdpVQv33URZA ASQ5VTqZDGdpCBgolzWZay0pi6cXWA1Al/T4iHpIGGpFAlVzjmSpCItAHJUCARtgeTPDg0gZWAnp mI8YiU9pcqElN34ikefgalN4jZoZeE04ASL3VSX0KPWEWWtWYqn5H0JkkY1Fm/WIP+kHkxg3lzbJ kPa4fnnpDu0HEHeEZ763LholQ+IxkEf5dcqolP/wqYSQ+ZBNyDsjIEUVmIrflUwpFgHvRo/ppR4Y 4D0igpv+eJnTMHequYrtSZduKIJCFJcfWps3GYPjuZMuMZVR6BMQ1aCIYD2IQo5FNpMHiZwJg53o VSrNSVrC6Jm65B5TFVGWeWIW6Uc9qpyjJQEWwEHzSZZiSJVFWmP2Yp7seHvqSW6SJ06GeYgwtJIm qoS6iFkLcXWVGZ4ZyhW+5wjdUSs7ZCEDiZjq2FaMCZFM2JC0hy7jeC17IyJ+OZEQpYk/haQhpqNj JQEX0AgYGlXeFCZkOhwe2nUM0Jpud4t5GJslWpe5iJeL2g9WxJtlyRt/WZZTAENM6jsKYByJGaD/ A9qFtRdipdh0a+SbUSoKj2qNmfluEciQTKqmUoimLPeoqiWQKumEb7me5jmp76mcMCifJrYO9ZkP 90l4a/qntdANxvE+60EBDJSUzZh7/aV2VCJzneYmsdOohXeudOeNs3adN1mJiWqOpqmhjupNHcov W3ieEtiESviSPbOWa6mvmjpWJJiT9OoP9MSimOCTJwWjs0CmMVo0C6B2QgRU9IYACQmupHgBGUB8 s4oyDKuwB/sUw9gq+1RREPqeX3h2FFCSv/qsved89+RhhwKKCnaljUlu+4IrkDdNg1g6s7msPkpy FTSf7dCHfYmu1WqvoEdcryCMxEhlpVOn4cgc/zkkHmICpaKapgeoLAMwG7hiUDvYR+5KZ16DqFXy OLaQn/04ssPAoYWwHPLVJDXaVsqKh9okX2RWZBsYAQfFruPknhF4thVwhArwpyZpDXwFESHrm5nz sPPqCMwysQHpn2qTnCCpVC/3JLvpj5YZqjYYSdqyJNHkt2Bncz3ahGf3URoWNk76skUarI8qKorS ADIXpDUnsPxKI/wXASCyRt0Ae+uhWLmrrFmJqB8FAb/7ChUoSfvofly7tr7IG2cpqrQgKd9jKTLk PHuHsegDndrZO4GSHyHbtG17pr02qmTDANZyLPLiR7qqTfDTsZQkBQTDQRrqsmoGt8AICPx0qv97 BHaCy0gTkF3vNj9BY3j+eyvvFsDxErT24jUF/JnZ4iaXmbjQwJOg+qKP25ttK7m8psCuVAFtI5AH kLFOSQLQMgX6y6gg66L5KKWh+pdK0jR94rdx04D88WERdiYzNqpTCqwxO7sNajCqInNNd6UFmEi0 4SqM6sLd0DVIrFjuSSMfJjCzGlXNq5cVg75Taq2LoBZPDMO8MMYxUhxeE00tCKQOMDDMe0xae8EY jJoHS6vQ0UsQMIxql11/QnXfg7iOm78wcpJMC2n2i1C4IgGVk0OdZL+KascrIgWI3CeL3IDz8z3m u7VuWw+PJrKDfL0N28Ey+8LU48Gd0aYMoML/3oNALcpGn1urshvK1GsLNQw/4ZQsWly+6gbDoLuw X7ygJvMfo3IuMjdA9EOtf8lewtwzkoXFPrdBa/u5MWwJ0ZquZhzGjsu01Nt4tQHNsysmpcxuP3y9 cgzMG1rHYazJZxzOTauu+Guvn1yv4zkJWgzOVYeu6TytkUw26ZzJF2zOGbyijMvL2TyqoxwPBeIB H4ABoEzE/Jaf07pkjTudsbsU7zykGerBQCyzQtyiowzMkGuaD5u+1wyj9ezN9Qyz6GCm/Bi91pvN 1asNDMABcoQBGLBk8yy6uClRuaDJYJyu+NnP8MzTY/zIgnyaysC/35LSLlrU01uWbGu9IRzM/+6c m3bhyXA7w6IMsahUAHb1ARvwzg7d0BB9vi9M1hSt1bPM0RR5QtjxpB3tyx/91uZ7n5C70SW9y04q 0Wdd0eVQzRZ4zRdNveCJMhXQAQ0gARyA02NNkW8bx+c6x0mNzsEsyEQtCKlqCYvawoSc048s1iPN 2Guq0zvdz1Jd1SORsAON1q8rvQeNSg3gAXuTAVD1yykqr+XM16xNDjCbzEHc1t7xAQywIx0Eu70s w2Nt0Ecd2goczQwrr9H8wmINy6eAtIDq0tiMzdosaR7QAR2QAR8gAazc2FV92VMd0V2LzJU91NJ8 AB5wIVLkspsdz3RcyEvd1+T8pzd0J5AC1f/TG9IhfNqWZdUmRWMErd3KPaT/MRv6gy0+19ho3Vcu PN3U7dEcvNaFfcED4N4b8AEeUAEqJ71BrNJyndyuvdweTAEd8AE5aEfKrNfRvdc/PM2TEFxefNBB LcbW6tpXwEuenb5x19B1LdgWGNTrjdHjHNyUpQAdoD/ZDc9I/dj2Tc/4HdrFVH4dsGOqc8z6jEym nc8DntoCbeC7rc5UzcHbDeHSLKWunORYvcX4e4psLccb/gELIHATENYiztEkjtw5neAiPdX/kXQ7 Eh0vDt2zLONwvg5NxpfXLdhLG9Nf/OPoHeR3PeQ/XeTqbeUkzRUHYOd4rud9Pa/4LOWeDdP/fM6o A5B0VgCypO3llS3gneoPnbzad13QJ67gaU7pGu3LbT7Rz3fhcp7h51rnGaBRTX7MJs3LFf7Qjwro onvXHJLlB7B2Lv7crhbjzr3o5gDYDIrdg23Grk3qaj7g5o3ppd7Zm37enQ7KB9ABGuDh3Bo1HErf kz3llMDU+e2yE6DQGTA/pjzYAB7gVB3mA6HBaX3rCJ7raA6eas7Tvu65bk6Nwq7buC3xqXpQzGvm usyiUmiSAG7X7K4tzTIpYLzsey3daw4RLA29kP7UO/7SQE7e5v7KnA7umu6rR97ukEscwDPqOp3u Hf3N2j3iw54kfqrwQD/w7O7Tkn0Mn5rw/wFv5kq/8HCe3M3b1kdf5qEry1t/8S5MzkPu8H5d4n+e 64E+9jJOxtme6NtutN0uekmb46hO90Ff7jtt8yNP5N9u5Def90LuuUtv1gDt10Sv6Mr89Qyf0bA+ 0rIe5QdxQG+uzQ2/+DpevQ+/8lpv8VPf9TqO4Q8d0U2t9h1vlnPtCyHfj39f9NjectpO2Ny+0l3c 0i9/+ZL+2ryOuI/d07md3jr/9+J86YIv8IS/v/kbpfpu5eF+5ozfoF9e8LOuD4tL5kq/5/lc+Vf/ 51mf2/h93LZa0b4955Ht/HtP9t6P1Lf9+Kpf/msPyoh+iojf56hg47T/05Fe2JOe+/8Mx/+8DwIE UYxiSRaoOq7pKaIsDKfka7dsbpou/s5urdwvZgy6aMKkEuc8Nmc1Wu0pvfqGsqxoYLEMYqXxj4zd jgejgVqmuynh0yP9ZBQXezzfG4/8CwFx9dD52ZhVTdktoZU5LtZpvcERJq24MUIS8sQ1Qj2akRUI fLVpcaFGlggQKDRMMCiwbZ5Z1snhHhoSZVmOBaZufS6K+u7a7XDyUSIKOxviim7eMaG5zf0uqzwp djcHg5N4Vaj5hYJCsRUcRERIMAw8uEMYFMxi4+UR5SJrNgdFwQcInSYnmBpZE4MoUZFC+85hUSXJ m0IdDTtRk6KwGsY7ggYO9AIG0qlTaQj/LGhAQYKCAwBevkSwYAIsBQJMUeKzkd+wizp75Yn4zKQ+ RxQX9lumDJouoeC+5ey45FBCKxt3cbMV1GM4ZwREhoEo1oi6AxAkQHAgIADMtjAJPIAw4UE9VoHk 6OTpCWLTaX3Ggnw4KGDCbBoTaWSUF/C+QteM/bKYGFNGfwelCgYJcUAFcom7HmKTkmYCA25Puw1w QMFKBwnuSeupt6nPjFWuOC2J8C63MwVRcYqipy9XorU+UnZIVZvVbFipdIMMTDcXsMgJjjDgAK1a 1N69wz3LYLJjiYoLA4n8cxhgYLGXl8e9EPEqAgdgA8fONdelo/CNGRSRT7Tsoct++oVU/wpJQ8lA wQYVKPCdhBIycEEGn6VnnmwLbiNZhhxS941RkA04R0XBDaCdXA80YM9wIO5mnjSE3ebXY1AUFl2N R03H4CCckWMOdgNQ8IAEEUwgC1sTfieAAK9QgEEGj9g2215U6uGXQO0VJcglNELzB2JsrDaBBK4B sIADZiZwX1hCiolQeVYw42F/tE2SDEfJFaQZQdbBCFwFCxjgSgQWQDAek24ZMBMGFVAQAQQXGBDb RxoaVltSPPYImohI+IehiSXc44BcEdjjVooSoNVAF4HKdkuAcioinFYZPmfRrZf6qJtIAmjjpwgU LICAscZuJwEFCRCwJGoBDMAABRZgMP8BBNdCEMEFAcaHKT5w9hXQYgi6Z1A1eQUbLhsIKEBTAxFO GEBKkbZ001ZO8Xejb9CRhydFVwXHxE/XCbtGBSNRt0MFDCCQgMMJILAaAxJUwKIAbhHQgAQZWDBB BHG1I6kElPbpr16X8rJNUJ2G2GUx+oiaRBgFOOAOqhcvCpMABxwZgatfNRFrVHxSA9+MW+aolTgd 8gqaJGDBCRUBFDD8sNXHGjkBBQgMoMDBF1CAbbaSZpstyVAJpOF+/6hXJbld5nMQumGScEACD8CS gLM5n9b1Kw7U2wa+kdwJcyUXUdaPZVQJUOgs4hLM5SgKBhrKoA1bnXnECixgAQcdSxD/V9ntjC3y tpYydTLKnqgsX3G9Nj2i4ftw9jm8fDPJwKPiiROVKjPSem7cfxmIVDkJHHkWXS7i9rrTX1ngWdT7 Efsw5phffcADF4gectnfX6ttpdeUO9vAWALEeuQECfYlrVBR0EDNFThwH+4YI4B3sdAm4EDFDBjA LlYaRKgO168X/csEwGKA/yCQgAIEQCYrYUACBCirguHAOi0DyOUy50GHmeUCYwvfCENmugNlykqr W4+dUvi8cRGjN75Lx6DspoAHVOBILslZAAKQALIZYG8wSUC2klQpVshoVnMT3tEWYw02GCABHoPA AsBzrQk4oC61SJgboMYYa1ANex98/5j2uBc+SZGNbGc8G8zSxpO1rcxoHZpeYGLkvrl9KowQi9gC jGSBBiAAZ6gZQAJU0gD7TWgdDyhSiwSHF33VaUePQWA11MDASB2gAEza2QIq4DOu4eRtMwBSKI0z Bj067HqpJOOkSkdC0nlPW3ETmoxWaJsU4IeSsMsLfmTnG9otTIwRcxgEVhKBAL4kADtDywMQcD+Y 3FACSbpPNJSonAI1MR0pQt5cGPDMlxQgLvHLZDl2uQINfpEPHRzj1bYnNliScI3jI5Gc3ghH+XSh a/DAJh3FIpp9TkOO/jgCKj0YMQZOIJgTaxEBvomxcJ7pAMfZFY5aaIsXjUBN7aiUQ//bssDQMYs9 6EDnU8owtapBjJ1taiXpRofGlo4MhSZLIlIGBqz+FckBYYuYvWDljMblL6dFQkAAw2LRmv6ioB88 FgIqoIEMoEqIHQ2AASbwgQcAK19gYiK3zncBDVQgkFL9JrQewAEMlNN5lyAlHXegVHbmz4wljGfp 2LhFb/1mM19BQBEXQIC1EECKklqAGgQ3pK8QMQIUUECzAhDYSEFAFkDTUo5OiVKVtslIhYTUu6aq AAdg4AITwMAD0poTehowhngSgQEgNDELOAAeHUUAAyqAAQp0ppogAdQGLStGdpbRlS51pSxRhzZ+ NO8FwHKFJwkFnj5WTAEB5NBfC8D/XCpqEjUFgC7gpovah7x1jHydwAGM9UNloaqhiyJAVW1rAUk9 wAJY/Z3ArmmjW8WgtXvMnzQngAD1MkkNOLTABdBylgrEqSu/CtanSDAozLJShNiCJ/jOwsY24nWO XRQBO9zRACcxSZkK6BmzJjtZBLTjHSCOlwBm0g5m5VJo4f2gWchLRpn4D4sJkJCaLnDbuZCQe6b1 SJ7SY1EljsEAFsjeAhiQ0AcwYKwvOYBKMlABj4FMLggmzFg4gzAfhWJqxYLwSkXY0peWDo0X4OeH 8JoeNShAWhFoiUOtCwH6KWAUrVDJnE3zzULduQF+fRNyT/pb8crFblczlgLcUTGO/wKAvRP4wnsn /D35Dhl4SxSovsSgX81hTVn+zS6wHPCFAr+zbAlt8NNK0VZheEECIGyYKlMKse11D410PYsENsDQ UCZlgHTgdQMAIGXcsaVdR2KVN4/NN7YswB2EVRtnLqtS7VFA0QYt72dz6ABT39bAoxudO7PqmCJX RJIXPUNrFUDrbceZAjmdgJWxPFyyrTpGA5ncSCr3A85May4LKO+hM2vmM4NvWl9IQG0TdQABNk11 KBgAAi4AtjY5m2/lhcCSV4LxjrbFAAiYgAckQOjfzdigiYYwHzVwATXqOubX4p65T0vZGtnKXEle MssPcAALaMBaE4anrvMNNy2Mw/+0fEFD9RaJ2we4u7xWC+E74YskC2QgdAAGQGKNCLTG2HMMCdja iCE7gIw/SwA1S4sgA9CAa5UW7ahRuwRCSzEJIJEn1a4131dqYzJXHC2xHLeuMa3VAvJLteyuAJlB SDGQtZTwV9zyBc9BUlMe4nJ8XBOqB25eqqtRLhf4wgJGAR4DLJJFBnBkG32317Aai8pOL1bODhDt CZTmOyJnFe0XtZoKjD5s18phpuuQcs0tUtuYDfzQJU82IVezeEVj8yQVouTGt0kCiBp6zItOeZZ1 0dXpFAMqI9YwueDWAcVCPffkkdAMTKABfs5ZNKd5D28doanYM2/ZQzcAQerMk4T/jgMMwLM1gJEQ IAAmE91RyxR9D/FhCpFYG3CtHOCJ1gg5X7bEFwTUHJEh3pHFgUd8GpnxDKJ4zyvF06pV3iOQ0mdk hqFt27xYQOgcirZEj6soIN+w14q4SvExw8Tp39WAkOxdWe81ilw8kNxp18hFwMBNGWs8SqSITjwR 30T5VsFlTo0pH2ahWhpl4KTMV/TdXK3wgCnonA1cX+MhgPaJDXGNW749UjCQVB2p0wLA1bGcBQZ0 APfMH8hBk7ZM23FhQ2CF1R3KBE1ozVwUoB/CRABsx5U1YNUNnicBi4YAXCxIHVxVoK31XcVZi8yB IseV1uGh1gwACwJojLvdBPnk/xfjNV4JysMJSp6WHUeXKUhvHcLxkZEBRACkvMPtgFyLNYAFeIBa gB2eUFwhLp/PWcC0QNkO+aEBMAAE6CGiQF6F6VoVekttuQtTeZAWYl8XhqKugaEPEg0xqIFZyEWL zIMDvEp6jCCEHcCkSeK90WIcPk1nENrSLcM6YZZZSEAUuUOkkMAzDcAB4BYGyJfhtZ5ABCEJxk+j sEr8mB6yoURngM0DYIDgEd3g3RneYYoCIcB2vNy7ZGIqJZ8aXiAKguIGdqBq3QIrMNxK9F4yuQK9 BNKbkEAakiDFCNe4fY8KDg0LUg4uDssEjhE4lldKQArgLEoAMIBGVkvoQMD2EP9gyWRKMmKhQdFP w9jNAnBcBGTRemkMx9gbBMDf96CZpX3kyeULCQCLAaiE1lDQMIFj33FiAohjBj5fGMqKI6iDAWTL mfxfkxjAsv3MLMTj8rFhPcocHM6JMyzYq/FB9QDeWWjbsfxQL9LD1r2EfUza6KXapFyl2ohBAiij PFYAIFnPQTkaAClgAFjXqQnfGaGl0FGYCZWNJ/mgSHWBABQSPboG6v0dy13gOI4bQz5SF+kTTbgb 7gBnA1QAFT1cAfBcT8qXbrLk5NXiSB1MWmGeCfjjtW3i1LGL/6DFjgHANPqYmVRlLH3MBZSmFb6A VqohBTiAeWVPAijAnX2MJg3/QM1wzJHkmhpVC+GFXjaCpAoZiD1UIt54jGL5XON14VzJXHyN4l8S Qs18zNlNFYq1Qye1yVaSET1y370ZyfepVfiBAWWSH1LSWHnCW7Yo5BckKFuSpk6+ZQk8JMvhJ4lG zNtFyRdMp0vBnKSkJVDqJtloo/lMwi8UIGtsgAg1E8HB1Up6ITnKAwVogF/yxrAEHTAyotp91WBZ aVKyoSyS47VQwOi5pX7wWyk9QyjoovXIaFIiwIGeKHxaJbDdwgnYZ14K6gF0JcvJJVSlWhqdYFp2 5Gg2aUgWDxQhj1hW0TTKGwMUyxY+zF6uKZJkQGhtQGnRFwpM5ycegBJ6hzI1/4BYqgV/0U+mHtoa Fmnzhc/IZMBXtSg+Smb0KB2W1CFeqhJAZuYq2dqmciTMWZqkyGdvBhshkujV/CjgNQAGnFH3pZqe KukkRsBLSsRaEUBUekwmuUUBjJwUemNKHWeFHYwG/JipYZVWjQDj2Z4fNUAF3Q+gLVYQtcUO5tCc aabjbV/kFZNtgZW1UEx3JsiXlRRA1CkI3Sk7oVq1vpSu9akgXkGgstxqvpugXs+0qqVaDh6jDley tuUAkcrOcFNshVhUXhmmSh3zfcxZjNatbh+2QN9fkqoC7BExrURA5qBHDcACDKBnosZnJZT62SU9 Wp323WrEcqeu/oj4sY81jP8nBRanSjXMRmIgXenash4jQvToP0Yry+mOba5lPCUpOS7p8JmcCrVB VLKKuD4bASAABZhJfjLfnWFdBqxEsrok4UiBBbibrfkcQq2mAgjRdi1S6f3sd4yAYh1JaTyeXFBL wcYsCQmlb5pBC/pbEKzmSWri1XKh4FVrmmngslohbVDcBZhfxuantFIrwimqrh1oo1raIrUtpojc msRW4/JNtKQe2FjI6CErOdIcfcEAhCyVecmFx4wCiqkeI7qCx7SpU1mc0EmspEAm+LnAHPJjDBQT Fp3rN2JmOJIusrIl6ppmktntBBTLv9YaobImy3ms2W4t2SRpttaqjzXAm8L/AZHYDiO6xQJcwAfw LTPxpSj2phEo77UdAAM0wFeRlu/+Gck9CIGiYBsa3VAiweXNqUkdZM2UZEscGjiynF5yJHHBU8U2 5BkIwGc5IyBpKsSM7fJ5bJZKbNmI7JoOrEKqH7OuAH5mC9VU5DcJWGcAXfHOYjnqFgoI7rNCTIfV jMdAGlkRIm5pQJG4oQmRzgavqMzoo4tOQlzOZfzsl8OKrkppLdeSrNfWk2D8nwGwQ/vqrH62icZy LLFSGbVa6I3eJteODNhIwAEUFbpQggRGEVi+lwNkF99oB71d2cdknYUi6N/ORgPjJRkdicgxJRaJ 6Sa9XWjdbfSADw9jS+au/88oFSWYmRTj0Jb2iSUJm/DyoXAJwVIsVazE+YNoSGfFyPAdvy79xi4O uyG2DqzFCdpfZYmVlN8DI8mgIJN3NM4wEhj2Zssko1kogiG3ygGEQHH2RYDdxF5/9uIDSJSEFABq Etisztx0TqyRdvGWQe05fUEljt9fmGIKrAld8tUgmy9QYuPMzWe3socJlAWSrIS7xc83oyIf9zFb Zp07NKAE/NfjuE00KNUwRZsnPYBnhhMkY7BLYXMCS4py0pfgvqIOZSF/oicEOFNbuF0EiDJVls72 FKkSa7CKprLBKGx4HkYc/F8CLABufYHPPWvDVOiSRl58zSdyFccgKrMrdP8MBhwT/BIrrd1wBsvi A3wqgQGOMvOKCs1Y7L1dQklXhXwB9sLnNZ/vFzJxt8br4MqjShsUH/lRFjXV6LGz2k7KTXekbnqx T0FPrk5tLzhHJTwOvV1qSyharTnMGvvxtUgTBnCAMb6xvu0BGszCAYRWDikACSdl/dquPFAMZfvX VxSfTMnB3mHtaqDm5ySPbbLkJJP0xyAKN9NBA891OLc2MZ2VA2YzuV2AO5NsG9LiCoIKKfSbUf50 nsDlxKhJ9HzM+KJrCkdeLwJdtWQAAYbkdCiFEQiAWLJnpBzSv6bSDXshtmgfrtLb6iHQL51Mw7aJ A8jVWg5eBGAzcvYlECf/r1z/I13TsoTFkzYP956mmfbKc2RWB6+m8hAATAgOwCuIHLtIU8dgohgl dVxMNs3CHWzx95YsB/F8BRYRnJNNSxOO6Hk7NHwd2KeCDbZgANekTbfwg3znD2nlZvHid1sjp3zh 9g2gdE/yNsspAFWvdUsW+HVX2NMiNxl4cH4ABNPUig1EeHGWV1RGz5kw1RpnC/B9qnt+j/rS51Pv RAwMgPimkt0wgLaYCcMEqUOfBYGZJVWSTYzjhOuJNUoBa2bxsX3n5kgj58xlqFN7s5DP8AcVeXoH 9/NVzKJz8T0q+FpJLR1qWEeoQLSI7rGM2KT94nttOPEad3xy92XD0HCg/8sAaDmojaSyyFdKiJDW uHhtomCMf/CVFJqNu5Pa6viOb2f3WbKG6PZ/D/nyJbo9Ep5ND/iSc2eT/5s+uiBmK86Uf8UrHPqI YjmXYoCU9G2WcXEu1xKZQ8WZBzO8CW30TOmtmgm3D56dv/cP6oV8a8+KY6BH5rdbb3NIkhZ1fyOA Y22x87XM9bWRCjybJjj3isMt3jNU19fEUfvyHdSUXq5Hio2YEzRyiMoapLohssMGyDqFxROtz/h5 oByMGlSu63qy8ro2b6ltVYBEWcmIvZdJYiHPDHu/G7k9xhyyl7LY4A3wYcC0MTsMPPkLRrvAdIGT VbvmvJySHriol5NTk//Ed9cnmpMtaSGoClMj1yRYcskIvGukupeurgG6Wo7Wi9eD/9ZBGGiH3Zrx ME0dv6uUv1+98fr1kVKL3SLATOnGV4Rxwn93g5JKwy+VEEZscBu3Gxsy0QfbxGW8Dccu08/6f0H5 +ehdMAFeroMsyaa82ODW6MXCKppsaADna4llioNz0ltPsc9izic5tvS8jz0A45ohB2/uKi9spuwK qSD9P+fmgXt7oYE7zIj7N+8xX6671sN36tyC1z++n8dc1mn4BLTnMaG2C+lyJa7JYhMV3IuXv+t3 Oz8AaWOdx1V/m/nUZPq9GKhDJayB4JNZUs+VpVE8fxR0yaD6uGOtaC//8feAPAgUBTGWJUmeKnpS C5LE8iwfD/ZAkQ7pe/+DZCIUi5GRGAgITNXqyUqNUARlYkGpRBoSyIEGjiEUmMhvh+ahH5eKxHh5 KAqCAdUJvTebg4rFbpIieELFUjDgELG3ONAw8RVGA4PRlaZm9sPmALiX5yRFGDUyMOEAEzmD0ICh 1orpA4GBYKdHaCuKO2BBoZBwcAosloBwAwTrEyQxoZHRZVA1EBgKRd00JSIyAPgQgXGxoPCLGkOW Zp7GLXGxQRGhwAQoXfgkHVhlFK1XO3iiHUCxgYmUFAMYPBpH40KXSzx6wLqwSR49XFXqWFtRRYIp hGJWGTPnMI0sfqI+/1U7YcCBhQkRGPxCcGqGjQutjvWgcOFIAgJLBnUaeLKkNYGEtCFYUEHLA5gw wYwpAzIIBHUWLkRAYMCiwEV4KF7jSgdfp3pRyiagVEFDPKJVHEFCCEMhrDPIdmiiFdRrAw0PprEg tTHYMGG+PEaty0MWLa9lg06Bl2CqBQhIxMkgxuojBG4TLGSY8OCAtrVfRTTGVW2ooLLQCnBbyWCB ZTHlXOWYQCFDBQgLRg/FZjr4PKHBA+mqwOnrPuGIPmDI8CFDPqCNDnKMIfdcQ2MQk6P2WUIXhwvj 460YoDHmOFWZD4fsMRIbcUPfP6EQYAABhAoTJLxoagMOUk2AgREOHP/A00BjLedYSdc8SJ9pRjFQ AQXpMZVAOVKpk5MEWNWB0WNcGeLJiCTo8keEEv1kwAYRBEBABmoNV4VBb3FESU1ovLJZd8udFt4C HTQwgJCb/DRKKU3BZZgryMCi2Ii3lFbfaiiMpsADnT3QAFY3PMBNEZ+ZotVjIYLHVoMQruYXFaMZ 8JoEDShgwFkR5JBFgQ70pg2SJBbH2kSAmnbPH7cweOUBHygwQAATBHTRlY7kx1FcC+24nQ8PWBAR micJ8MAHHYj6QQQCCBeeRrOhwp5mlmwX34qoqhmpFEoYcAAEFLAUgUIFVhAaHVbK16dPDlY5EZtd FXfCEgdQOAFoCl3/0IaHBmjT4FZUynemPqMkhRdJqC5yQAcOBCDABTMSeuUCOHS5ahjZWWJOmBgQ 6WdQjXjwQAINePHdABFw6hIMgp1yQJNRmbGZBBVcgGCaPyJ7h5nawlNkA2lR0EACdXBClJkWbJBE aWfSqhqhhw73mACqSKABRAtAI2V9wKGZL1kSinXotv1EUCoF0U3HLRMHRICbBL0sCUZ2DAFB4AUU PPAbxYRkkIEDGGAQLkYKREsBBDHEO4xHToZUAQYVMiqroMg+aAK7owxggAF0RKOyfCkIAMEHFEQs 3Hxq5l01s0DdoUQBdRdrUpUXH9utcofwLO7JTTjQAQZFgEwfNAs0/2ABsA28dNlZlWwXgR9SL+Dx YttSfIAEfiPw4xT4MbApaLIx3eqrkllQxgJZmWi51cNqO27Iqqk2AAKjZjBL4xajTHigiyCKPJA2 c4sRajpP0QdyPecbBS2kBd5PNLFP4EYvlsnlkDLUgvYMtkDRGp75sm6VYAELRAss98GkST2QQG7c wAAmLMEkbhtXargnt30oi3AFwMAHHvETyBmverOqx4poJL3vPG5Zp/FWobqmMxGOUGLKSZACQBe2 0SEAfqqrAOuKpY8NlvB1cHOTAA6gAAhYoAvCYwAOdAAHpR1AKxK0HA+9YrGQhXB5qxFABDjQE5Np L1vKymAUgWSP5P855mbJ817lCnWq8b3tew2cGwEQEAGHdQMnlHhA/ZLjQR3Kw1PH0xstGIA0C2GA QBbYAjxAIZEG8jFZEJwekvKWNwFIgAMsfKQeOcjAuEUILJbMC1s0qMZr9CFF33OcCb1oPdsVIAEO yMkLlFC1HD5xjDXT5BdP9MMESGCQvgAR/2o2sSm97ZOR+qCV2CRJSlKMfA9cU5uiyMBY8u8k3Eul ikhywlBur3IhLFo/qnDIKeXRgcYTVyqZZRxwohA4ifRUN0XYSIkdCxSdsCIHZnm4waVsWbaMnArs gCDFMXOFttwhWAQglmuS85nXK15eZnVKPdbiiYdraCVDMU1UChP/n7a4pTe7x65BNIICF93iMrtY QpYtCFUDUMAFPmABDjwAb9szpqDIchzvmJAagypoO6mp0XFesmJmHEs/qcnOn25yf4xEpzy7Qs+/ 4I2W+MOkinw6vhJsAAMLeCkEsqhCBpXIWyjCoznzENGNllR6aqyd1SSnweuptHsEraVGhynXjwZK RBAdqCOzxUEQfjKaV4JABwgAow5EIB88HdRcz0iosmqzsdxcaj7hOVF+MHWZjvVLPL3pIDJGk63l jOdd9XazxiyUREPtYj/vt8MS8E2ZA+CAqUwpVsaYMHwoPCtF0qo9zjZOlhLtnCcCRyPc1pUxaj0u MfMJUr7ah7M6/9wnKi2qReYogAMNCAADPgABmjbWpsTBKeXgusbKkhaoYNSsRNHH0zQZDrR4YCd4 FLla+5h2i5Ck0mXxm17XulevcM0GBTqwAQ6AF6xozW3kuFJWhXoSvSb1632B+1425axN2P3tcl9n 0vjmFaLTkG7nToo/61pPsGQpREsnsN3FIpW8o7UHbyfrPTZalr7MXelrUwwhchqVnjyOm2gVulTq OfW0/fVifv+LVwrCtpo9M8EA1GaACmwAn4Nl7YP1EGEJm5LCDnUciU2UYeNCkcN/ZU1GK+xEeHr0 zGYysT2oizKUrsyRSGbCKqLTmzF29qKlRFEaT4lU9SY5ypmd7/9QgyyUIUOwpkdum+BsVky98Rdu /i3yjgMs5fmeObPRSAAduOhggyLOD2YdNEjRrFYLj7qFHMV07ZDL17X+sol+CnFRCwHdvWbvzhOu bmCh2eUWn2eDg87ZGbOJ6G32tJtP7rR6gUxUIXt50uOlsm/pbOYlb/oina52tSMd6mnjDNIFHvMj xyq5sKRIzKkBrjCFu0nipljNIcI1Mev95ljH2bkjnuIx+4rncuqZuEE1VkffSmN6jyJ0Om03PXS8 XluLc8CPLtyJjwplI1fanZcW8X432mTVUpXZzsxksAusXxS/W7eSi3Ap603mib0137SWdVF56O9/ hzXZdvV1soD/TeB52LmPKtz3sbtcyzCqFuI4M2NP4YEPHF9c0Q48d3tFnWZXy9fIIUdkZy292X6T ncmcdrKgW5vucfoT3TIHZbSvBC4fL1KwjzV6th3eYeppWO3JbTNGPwxnfBfcslRE+EOru/CeNxx9 f090GW9KEptHm7LqzrjJG+1TZlf+4/cLfX1H3vWS/1zcKG+7yodZ1ZZf9eVSinmx7Y5eUZ43hWjN OYh3vkfJY1tlG07uYw8PTBA399fSNXhIHe9uJaeM74gi/sPffvnyYvPGm88x17f++Oz+uLhilzS3 c4x6tO+d8Kkdd1Q7in3RC5jKzWb34N2Ne+Lt4TgBGI3//w+AcgEogANIgAVogAeIgAmogAvIgA3o gA8IgREogRMogQFQARzgB0aggRvIgR2ogRn4gSHIgSBoBCTogSfYgSBogh64gigYOi4ogi9Ygi6Y gTXIgimIgzB4gzOogzt4gi2Ygz0ohDwog0Wog0A4hEl4hBwQAgA7 ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/Cube2.gif R0lGODdhLAHVAMQAAP////f39+/v7+fn597e3tbW1s7OzsbGxr29vbW1ta2traWlpZycnJSUlIyM jISEhHt7e3Nzc2tra2NjY1paWlJSUkpKSkJCQjk5OTExMSkpKSEhIRgYGBAQEAgICAAAACwAAAAA LAHVAAAF/+DHjWRpnmiqrmzrvnAsz3Rt3/gtCgMx9D8fcCgsBo9EpDHJXDqV0Gb0Ka1Sr9OsVYvd ertgrvg7FYwIBXS6sG6r32y4O06f2+X4ev6u7/P/e4F+goCDhoWIhIqHi4mMgwRnBGiTaZSXlpmV m5icmp2gn6KepKGlo6apqKunraqurK+ysbSwtrOukRwDj46+jcC9wb/CxcTHw8nGysiMkrW40dDT t9TS1djX2tbc2d3bpZNnzeTM5svo5enn6u3s734FA5Lg9d/33vn2+vj7/v0Aw43g5W6dwYII4SU8 qLAhQ2HP+En8NzEgxYsWM1bcGE0cB0oPF4p0ODIkyZMmU/+2kUdPI0aOLmPCnPmypkyPBFGW3Kmz p0qfPH9GtEnzptGiSIkqPTpJF8igUIFK/Uk1atVGLD8mZcp1q9elX7t2HHi1rNWzU9GalTpUrNuw cMHKfevP49O0eNfqVcs3L6KsTekKjjt4LuHDqXTl3Ou3MePHfSHjaYu4sOXKmA0rtRu5s+OgAwSI Hk26tOnTqFOrXs269WheCgFnvqy564AADyZImMC7t+/fwH9LeBAhuPHjvyM82I28OXAJECAooKlY snXPawE4wBAhuvfv4MOLb/DgwwYH4tOrj/5gQYYP0NfLB98Awgf4AkC+o1x7tv+LAiTAQQQLCADA gQgmqOD/ggtKQEECBjAo4YQIGoBBAwgEQOGGDVJwwAQU5LfGRJx9ZuJ18DR1wAYVHDAAhzAe+AAH CxwQI4wDbODhizduCAGNETZQgQAjHiRbf0jSZtEABhyAQQYEGNjjhAIs4EEDUk7JIA8XQJmllgpW 6QEDWQqZn371VIfdmicmQiQDFHwEpoQGKLBBBHNu+aGceSpowAIcQLCgAxUEQMd+Win5n6Kp8LCc Bgn0qeABDFhggaQJBrAABBtEiumBlF5QgYRmovlNiSimyqYhaNzmQAQSLPDpgQSgJ8GXkjLgwASy zlrAbkNOaGaR5BzJ6LGL+tDABR58UFwF0EYr7bTUSkuB/wQYfHABBNV26y20vDX77LfkRksBbxFE SGGppuqjZpvwqpqHABVQgEACDOS7AAP79svvv/4GzO8CMyqAwL4AJyzwwv8qkMEE9+ar8MQM90sw B+puWCqx5vCHbJLJRmlBr7MCQEAGJSNYAcm+ogzjxnU5terM8YrMQMoAFOByyivjrHOMw96VjrEh f3yZACPjfDLOAPSc8s8vD7lJP+/KazXNBSDN8qdQ87w1pgbsrLHUHK/jcdFoI4n0zSkvjbPTJXc9 togxjxMv1tiJ/LWkcs8Kd8tAD1n2MUSDbLjRm2ittNh+791n38JK3a42VeN9t2OKP834p39/Gnbg dLtz9v/haRe29uJMd44p5KSSXfdHll99ot4U5hfmAjwyyHqCByCQYJ2+T6h6glXmDkAPFO6+YNDt FI446SBnzmAAF0xAfAQYTGB8gm5LmIAFF/RaAAUXWOApg8MfKAD2EvAYAAYSJL9562eOmCZZsec/ lfQKBhCBBvE7kP8aAIAFTABXB1IeAihwmwkooGmy6t6C0hcACRCQARIIQAU1gKcJfS5qoUNU6UZo uNNtKQELoACCuncBGy1IggpyGgIuAMGcze9A6eseBgwQgAQ0wHoTUp6CYEY1mV1Odlaj3YTgtMKd YcCFClJe1o5nAQLUEIYJoqC6IOAABO1KfqAb3DCcR8L/5x2FfwtiIoIUYL3yFIBBWAzTBd5YQ+Wl D0EPEJQXgSghISaIXfY7Ff6OqL/HoFFBakRQAjyQgBbp7oYHGsAFrIjDCELyjtrp4B4p9EEOEVGE 0DPjf0wooUQCQAA2IoAF6KigOEaSApSspA2F5zgAMECPCfpiECE5RNcV0W5ILKRVlCihFCaoABVg gCMfOSEKUEBXD4gUAyJAHlxO0HGRWIADtiklXfaRl38UnNAINw+thLKM/jnk7x74OwtA8YWQRABv HMS2BlBAk+hzXAAgoJvdSOkA52MmCKdGokEGk5CYS5rmUlfLOXVybvphyOhEqZmmWPSiGM2oRjfa lABY/4BtJXNlnzAJJj8i6JNpMuJBZcekA7j0pTCNqUxnegADNImmMSXABQjImgC4BpUa8OlqNHgj kmrJpAdiHjvIeE6QpQGVCbjABjRA1apa9apYvWoG3uOBrHp1ql6t6gU6YJ6wYhWsYd3qfaxJIaNO yaQBGEAEQkTQ++1ipZ6JUgHsuYFYYuoA7sGnpAIkAQ34VVKAxUAHBEtLnD2UQQhgAAY8cKuIlmOi 6LQJD4qDgYBKCgHcUuGsAvAqDATvU6CtFwB+GCO39kh5CeCW9VB6KpUK0ye3iYAFJkBAX51LeyXL DQV667nf8oi1MHLtjVhngGsdMKnibF45A5NZppB2A/8PACmmPEoBB2QMUw3AAAS0O9gLdJeVq+Xj hpQbo74JwLwOQC8g62LQ26ZkEgNYQAcgcAAE5okCGVDAdxHbgQdkqGQV6OyA09vahoLpoRZQ8PJ8 CUqKyoQXK2Kgf+fkAA4gYHt9ypH2NDQrCHQgAYc9qXrb6uCjuiwCHUBAiqEbwpQC077qmIQBBPQB BBygADYNspCHTOQhD8ABH5hAkZfM5CCngQM9/nGTmkxlmw6gAR5wcKUIUGVJPgDIVQ6zAQrgHis5 WKlGmm51kSKACXQAfBiIs5znTOc61zkDHriAnu3M5z7HeawbgLOfB03n97BVQgrQFqEBfQFCO1rO 73n/wEAnZ43KIZQqpJzVADTAtGei7mUrFh474wbOk1JYoolaM4CS+emUeXqhoG6wz0pNY0pnA1U4 PkeUKkBcTXMaZ68OKa0ZnNwWv3XYaC6WmpvalUx/igC/djV5V4fsUEuIvTBC6molF0h31ffSC6HX tCUl0v8au0fl/qO18+lYZJ/6sqlm9lecjSlod3rcj6u2rGHtSQrbGHbgRsmu8Z2nAQy7R8GeVbpV vG9Sh3GcY1y2hWdCb3JHu2QJ55q+iz1r0NVVkHfN9UPE3WqMn/tGC0/quq/Zbo+LcRmYlbc/Kt4n ewOb4HPSNnI5hG0O6dzftb1xwO9L8gklAJ/QptGE/wy+IQYqyOnNxLkC2IqALE8o5QyewAZo2NgJ VX3UCJKAZxH0cyJB3BhMnTg4aA6AAyQZQQLAwG0ogM2LL4gCHzAe3kGcoIwnCAHw+bsKefXNGE3T AWQ6QKGuXcsEDJ5lSD5tFN1dP/qGfOjhZvWWeCXa4/16uBISKQQSIHcEjb70zXTcADi/wmg/EY4b T2oAWQ5H12/Rno57bORCiGpVu4TtBRxVJD/fa+7ZfUFQUlDyo06hRAoggAaowIx1DsQEvKrrCxoA 9CvwoujUUKD9rnHQAY5XgRe9mMI/nstAzyCmU2j5CII/g/yeIFOCygILptXGI3BHkh4A/9rRWwq1 IP9l93K+kHa+lw/AtwDpt2kHwn4vdHzKd1jyd3c4Z0ztlH8JFHsVhG+Y9H8REgAc4CATwAEZ4F9l 93Hednnlh2mah34I4oAAQH8mA04VWIFP11CmVACrRCFYt3MAMEOM50E9eCD4wgAOs266Rz+W1THx pnb9sIANuH7F13obcoMzhiA0eCCJNAAYYEVEBX4aEwEOECk8uGHp44VgSGIq4zgp2G2UY1uYlyLn xyBs9DsbwAFVGIPgdAHb44cUsoUFNHsC0AEZQFV80krDxgDWEyeox27tZ4hUtQF6B3bHRHkGiBUS l4D7AHxgYnPS1nGxxnH8BlG2NhYsKHLNUIfPdnD/N0J3JbcuKxdDJxcjS8ggn9R70fNTvOgaM7iH NSeBkiKIJRV761WL2UZ5pwgNuJYWt4EtehaN5SON0yiN4GON0UgBFUCN1RiN4GMBJqiN36Ib4kgu FGABHVCO3uIglsh8bWOMLCaK4ZeJvYCANUEAuMEBDqAA/NiPCrAA/viPAQmQAakACZBokDKQCmmQ /7gAAOmQDcmPCGABH/AADemQEJmREIlCDymQHYlC98FYEkKMLsYh77VYDQc4GxJ3HVBZy3gLlnYV k2AlEFAAbIgpE7BDfOdQG9AA+IhxfggBndd0yMgh6WYBGfArs5hFRbkht4ggjfYrIXIousgUqKQA /xxAAWEoKXFlYgf2KUyiI1vZJ3EFY/1lS0MZiDhXjNOjfR1gAAYChPFYiggSVxLwlnEJdO4ih/cV JaGSATeJWA3QAWuJbjMEmCVzAIPJMhjIISQ5JVh0AA7QAWAnl9inknUpmZQZTmYnXS0xE2lgKEKJ g3miANshknNyZRNAmnNimuKVRmnpjg63Rg6QAZI2REvZhvIIAKZpmxNWeVTzbSM3AM5UAZInKQkw TyXjPxJgnCXDRrpRSrE5kk3pgy7DRvdEKrkpSynzQQaUnbhYKFQJb0WRW7w2dnkyPhDQADsJJrmx jyVjABcAHe1pf7LpKxhQAPMJARtGbDxXnUE0R//72Z+0tZdCZxA+4AAa0CyW8miEZgEa8AEasI0O 6md61iwVEGEV6md0l4WKpGiDxmgbOmjvwSseeiCJ1mgh2gEaoKIjymclugAnum2duVSb2In31ANi FmYIsAFrsKNUNgAWEAE6CqRMVgAJQIkwsgCT1GUWAAFcZqRHaiftWX9V1GUX8GVSOqUb0J+cqYKU I5yryGs4I4Mpw1tKI4ywGSOPiW7weJmeo4z0mAgxBw30AowFp6Z5gqYpY6YbYp8jWZjHBjTb+X2z GX4vKQvNiKB3WqZ6Oid8Kmwx0phNJ6huSqgpqXEP55nmFBCN2qePCiaR6muGN53zZ6nL9aZDSJf/ uwemlSamyvCpJeOnszKqzxaqXGiqdwegoaeqkBifcnp2v1CntyCrpIoztlpvi6irT4eq7eWrtHeo EAWHlcaXzbBreJqauDolySoptDohlKqWsSgshdpzG1KAwqqJn9mJZAqqTNOtwViqbOqsyYippCit 68JtlrcY6mCsYLmtPQKveYJ1gDp/vAp79vqfLTdQc6oIxCoL/mp0gSkh30qxEKCBCiKwCZIAD5Ct VggjidRD9/lC76Qr2+QAKLhxDJCtmEQANSlAJ4t4EztLDPs66VoM2LqkHoBeS4erq+cgGIsgGoui znWbFOJ+HNKYE6CmWygAABSDLSkBDsJ3Pzhb/+ditNH6QtdCAW/UZlJ7lzy7gZtqo+uKDxGbRhGQ iEcbqgHgQG3HtRsytAAAITJyaK20rWoktZBEgwKgjXy0cDoXAQmQQZoCp3D3IEEIdQiyQ2KYr8BZ UKl4DmfrJ3EXtu0XqmZ6AeiZIHJ7uEFbg/IqAQ4gUrA4PX/SeQPgARiwAe3YREADARLARly3qgTo RN/FRXQSrKLzhBMxucj3ucOHIwdCTRzSuU2jAe8Uetu6ABZEQEhrgc2HulCyeq1Ls54UHT2GAOmX tQrCIxNAXgM4eS5nswWRszCSlDgCsMoBI8YbAKrkpeoXIwmQZGhApYEavRLyevD0uhLANt9Du/8S YkEKMhy7NLZpVrYS4bvKZ7nZt60QgLUUYrygMrvKGyMp+iTvgZqCWLAt1LjCAru9IoS/uiD+00WZ ErsFPGnUemuwig4KnCDoyyEVOygmzL4eO7fqQoYbQrCoy7Q62HkCwDYLRLXIJriES7wjnCkdOyiz +JS9xHvkuWo3fCAxvCEzTDwDwhuwFLc3rADO1F1GubydR7o4F7K74UwMTH2r5Uw1zL0rlMUg0k2z +IbkS4ftyiEJAL/Bm7Qn+wBVCgCdy7FT/Lz4K0CbO4M4RwDvdGRfdnUqy7L6pE3b9ABSUgDJK74g 1LCHYI/U8MJacsV7OsXohrfM2nf06nPQSov/u+m4rsrCkWsQnjwloAypooxyy8qmB7u/o6iw3am7 FcYRsdwjsyyqtRwjoPinpayFp3yuqcyUq9yqK9wR1qoM5jurAHsjEhwjhDw9jleobWrLHNJD15Kp 1BbOCtAdNXrAnboRwXwjw6wl2Qwjx8wg00QBGzB7lfrMQzRX90zOfANODYA9D2AoRQK5/Cq5d3ys Z1rM8gxJDAgdBZTMD5jLigiuFQDRlgnAcQquzpRBsNGEZsO79dDO2nzNMRLPYcwgBsBBZJKr86rP B8DSUpLRSVzOC4IADwOlvFfHD1HNCl0yKG3FjOO0LWI8BQu979i9OuIi6ubP+abUKwOXBKXJ/3/A ydhA0un7rgyd0gDgUxAqD2sKI9/8rOqDNEkJYjTtxv9c1l2SAP011RFl0CmB1TJs0jaMOgYAtksk 0TNI0dyDMnnNAQzsn8foWBgAAAbgZjLWA3Fd0FQ9GSL9DX1bARyJkZZ92Zid2QvQABxwkZr92ZpN ehNQ2aBd2hipAA1wHqy7Ie5B2qGdPa5t2qBtmqpdvQgiWQfjkboNkAgAPwfZkcC928LdkaapAZNZ IHDQ2MpdrQd6rc+nI+US3dByjuko3dJtzxmgjtbtLRTZxhOiANVtjhuQ3dtdLhQ5xQrgAdfIjdSY oez93vBNjZYiKKTg2MsdcQi8dgn9r1o9rv/S+dJJ/TIq5FMELgAFLlQHbuAKnuAMvuAOLhqaYN8S blcHDcv7jSnvzK1bvcOkjMv6TM+ndt8TPuJxLTQi3tjI8LCxQNdWbNfFu+FrK69ivczWaXgWsNPd RuI6rtwnPuFx2NzUzOIxjqww7siTytdjXa8gG10o3uNO7tg7LuHklN/dIOQ929/uCrJITuNGDrI3 Dtc5/uRiLuYFHaavPKZFTrEuzsVpKuOO6ddkt4ghXjZk/uRR3uQwF9n6YOVqjuWSquUA/uccUik4 3gl3fuhg7uQ/Tn45xueX6+c/TSHhOrI2PehMDuV1fuiI/th1YNW44OgNDOm36ub5HOCD/uX/953p Y77pFD7XF+6t26pBYykh7TuzujzoAy7rqTclul54S17oc6DqOs7qUWwR7VwAh93iJskBVSXYbB7O F6ABf2wyeBsBDMDsGpCO9zshDoDPB8DsHLC5BPvlPk7sim7ui36zjuDTnJQBG1DXJnnNchsAFWCT 20uxt4wgIozUDLIAgad/i3vJ1vunlw7Swi7i5j40N2q2r74g/2dSw2wGugK8gHzDz4QAUzzPe51L EKzMFuvFrnsgHXzrf4rq5X7wJH7wZl7haM4hE4mPmBuqhfjFgy20N5yTE1AB3o2wgA7w1FnIXU0c EIDOHlxKc27iCb/cCZ/ieq4NL/whVuS0//C+IQHATgs0o3KbkxqCxFfX4cNr2xvcebjBHvzJ86cO 7Ime9GGO6Olevi88mBGWwcreI5r77IHYWwdAwe03bI2pp4LYmDok8NqmTOls8GqP55k+5evMrh4b AC61Y2r76OEMlYd8IHLLfvtewT3vnJRef2O8MyNf0V7+uGV++CfP6ivv6rUs9XNfO1X0fIXZuRQg YJeyw/nOmhMN9F4IBABYu4Z39MFu+oZP5kxPE+3ct1Pf4kr34mxKaxr/3zNYpYIYW9wz3hsg8KA7 +qku/Pat8szN6LoG6t275hGc5nt/5IGOmQRf+HTO/UhP/Pi9+Axv/qFO5G3e847J5b1q4/+kDwJE IRLkeJopuqppy8KkPM4lTRMcNxSnL/56wKGwIKg0AMols+l8AgYaKLW6nCSt2iYhswUwKF/K4msu eLeMiuBlisHd8aJcHrwTRzobv+a/9R1lmWlJEX5hHWoRTKmJbVEwKFp1fTFYtMXVzW3WcMb89QGW 5HC85aEWBREITlYZulIlxj4NpFEF2HpIjEnSOqEtblR8fnbOGcPhqeYVDOyJRofWtP42wVozzWYr MVLxWGQENDxqRXIvVULxYGgcOAOCJh+30MtLj+Lo8Cz3p1ajw4ZuGzd1TQQgkLChgJIwY8qgAxDM CcIJHBAM4EMHxryOpzz6Y8YMWj58Jln/IYkYpVFEgtm8MRkXIYMCJg4h+UJnUInMDWXsaQQ6T6iL ktNK7AmplARAbgK5ubRmi8mDCVEXlLNyLuJEJVUtPIiycRNIoWWXiuzxzNRJoyWbZnuaLeovmAww QBjU5Ka5nAXTMLggAYIAAZoOEx16tq20UvxSoT0BVyrLgXpfYijAAUICAVT4aoWIrgAGAxskNGBF 1k5ie4vTQh5CkvE0GgIkfMigYTfv3r5/A9fgITjx4rszdOCg2zhz3x8osLKS4ENzDcmrY9/goQIC I/UUtzYWnvYopKYix+4hgELYwu7fw48v37CGAPPv4/dMwQGA/P7fB2BAZVUscAEBBxiA/6CCCTL4 ToMPLhghhBMaYEBGY2HI2murnYVeD85AUxt5KF1GmUoA0EULTFosgAkpL8IYo4wz0hgjDpzUMZ54 i4noh2OwAbnMZL/IZU2KsexUxSWZfNikk6o8GaWUT75RjIY6XgmSh3qw5daIJKpU5C9HurKiFS22 UeOLOKjZJikoBBVPJ1jiyKOXPpby0ZZABJBSRGLSQuYkU22B5pRUHpqolFWq0NGGVnaY3h0gstXj nSMMSQugsQiqiJlKuuhmH6K6CeeciD3qxniWjrpPkJISkWksm7rS6SFJUoEmEIr6wKuvjCKTJZ2N hrfnbKxOI6srtE5iKyGf5hpqqaSKav8qC0ANiypRyLKZFKyvYupnQAPOVSKRt5yJia+9rpsosB8d k2qwkYLb61pvfvmWuE6Ra6S5Kvb7xJLUskktjdbmqK28RbXGLSmu7imSskooUIFVW30T8EEUTFCB AVo4C8EEW+AKha7r7truoe8qI+zCq2j57Q/HXnrSxAAc8IADDUhwgRXMBjCBAztPwFAVtj4QwQO8 UKJxE7pWa3CbCMMJ3ssMl+Xww+fJnB6YZhiAwc9OK4HNBQlY0WnSSvD8M7oEqvuryoqyTES82b7w 2paU4qs1IDcvIYA4Y2shAAYCDNAnAmn/ywQFWRzgcxXQQjEwqQVLbaMMp6p69bV2fvn/Y8RBAK6E AZK/QrYSCGygAQd+QdEpBBA0JPbkb0fLJK8pzx1l3Ry5jHeGyRjbZb7SlA5AfYWobjbaRzfOhNIL bGBB019APW3mB2/+OT3Cf9dwzZvnObrdpSsQQQDMs6/E2Yx/EcEEkbuNfdy7975yr8QSD/4Kenft Q/c6XihKlwGjES6BAHgf9LbgAAIAgAI1mZzqGiIt7W1PRlTrHAc954ltjU8fO6jXtwyIwNQV6gIX wIAD1tdALSDAAhcQDRVK9oSTyS1/i9rfvPLmP3jFjIRCoBkBbbOvyblQgVUIAAIQ0BmQRY8JBljc IioIgOxNLYMz2qCc6vTDLmIrhC/y/5YQl/G1cZ3IWWYgFIvuRzcd7nBX/LubB2FmlgCqJURiLOAR TaQSNX6BcgK7YBa1qLkbJayDP1zVHkWHx3/0kUhWJAQgSYY7k7kIZXD0HQ+DZ0fPAbCMefIb8iKp qUmaoZJV1EIAluaAjETNkDDiYpwSWcdaggdZ5tHTI8MVRUUwSxGqrF8VIFCB/QSgXbzb5P+A179b Do+OkeFbEaORvC8E8xDDpCAVGpCBCDSgMEK4nCxn2T1bhu+WjAwdxHpJOlPOCpWI+OWtLokADkhg AawYpzKZ6aTfzdGZXwwleohIyjPyK430fFZlBGCaCrzjQkMgZznxhciqfQ+auMxo6P/K587zwXNZ 8tzCNr+RBgIg4AIHXNMMNOnPD/3OUV+0WxCnOcCD/i2kgxopFFXSBQEsYAIbOECaPoe5Gh1Vi7T0 3j3UCTpdtlOUEpsABh4wu6tiNata3SoEJLAZroI1rBB4gAbAItazZtWrM6mJHP9nA5e+tJkc8iE0 Cdo1g+4RBwmQwAQk4Ne/Ajawgh3sYAhr2MP6dQIQkB9iGytYcIpFTqegaEVdkE7OOVV8HSWj+U4w gP+ANrSiHS1pC/MYmlYNri+NqWtmGk1I2VSP1VQGMxvlT9tu0rIXbSnBKhuUjWK0qYt86vgcKVUc yfJa5VSuIeUKU7cuU39xda4naer/P7uSEK/H40hum1lb78JRtxbVSFK36FvxBhezw9WsLj16XOua SqmWTe585cvDjaQ2h3Fl7TMHWiw8UhOnwP1ulQjMrvAirJYTjWVll4q1y3pwnVAdYWc10dz62pd8 GX4uhm6g2tt2smUi9i+9Cmo8AXMXwQXu7op1KN7f/oCyFaVlGGcq4eK6t7P1uHB8eazhDDoXvy3V 72pDDN/qygu7SglwXqORYheDV8UHhvI5FTxOBs/4nAp7cISJSxvj6pi5QMbwmHtc5rZ2+K1EBnFb kazR13LIxNX8YJR7h1sWTzl/L8ZaeTV4Xhpbbb1Za2SOPwoKH/fZYGI+M4fd6uE1/xs4zf2to5Il xeQ501bK0dVzne2c4O8k2py+dXB6mSpoELKTwoa28IYbTObMBRl4m97hdAHqaLqSODHFw/SA8Tzr ud2ZyoiE8YIxmOXdgnHLV7vxlwv93kO3+tg/3l6s4fVrRNXayHC+NaX/W8ZLozjYnm6xsK+tySqD urej1rIiTd1l9hY3qmF+taLpLbVFUxtYaTZ3k/jdzzaPWKDdLvFdT9xkO/h6v50G9qeDG2qWrhvZ wIUw+Jjdo11WWFWIdrWZ833fW/sbSkUG+JEDfl1vx3YH5105y1vu8pfDPOYxf8YHdGDzm+M85zrf Oc977vOfAz3oQh860Ytu9KMjPQfpSlf6B0IAADs= ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/Equation1.gif R0lGODdhwgHnAMQAAP///97e3tbW1s7OzsbGxr29vbW1ta2traWlpZycnJSUlIyMjISEhHt7e3Nz c2tra2NjY1paWlJSUkpKSkJCQjk5OTExMSkpKSEhIRgYGBAQEAgICAAAAAAAAAAAAAAAACwAAAAA wgHnAAAF/yCXjWRpnmiqrmzrvnAsz3Rt33iu73zvu6KAcEgsGo/IpHLJbDqf0Kh0Sq1ar9isdsvt NkdCQUBMHpvL6LM6zV672/C3PE6f2+v4uz7P3/v7gH+CgYSDhoWIh2pgAomOio+RkJOSlZSXlpmY m5qdeoycoZ6joqWkp6apqKuqkGCtrLGws7K1tLe2uYYjjbi+usC/wsHEw8ZtAa/Fy8fNzM/O0dBp oNPS19bZ2NvaiMrc4N3h4+Ll0bzm6eTr6u3sk8kZYe/u9fT39u7V+Pz5/f/+iH0LCLAgwYMGN6FL iLAhw4cO48SbFxGixYoY/+3LyPGix47TBn4cCZKkSV0LS/+qPMlypaaJLWO6lEmz0MaaOGfqzDlG 5M6fPIGuTBm0qFCjD2EeXYqUKcKbwBpJHdPLadOrVsX4NIagwoYNYyKAzYq17FKixQIs2MBAyFiz cMnOVBrNDAcKASYcoBi3r9yRUIeRuSvgAt+/iP1+3BosQAULFAwknqw4Y7yq0gQMuEugsmfKT+Vd MzPAQufPqEFrlPeMDFiqqWOrTsdYGIECB/DOls1b3GVmARRUeNC7+G5tr6QNQCDGjPHnx5sxmlY1 unXo0mrrGnK9O/bGaJ1N9U7+u6/k0OaZL8++1XRs1dfLbx9JuzDu8/PTV/QbPub9AOqnCHqjCRGB gAEmKMj/e60JAAEHCEaoYBv22TJEBBzsNaGEHAoQHjGNFGABB29taCKHMG0THAcknugihwxeowCL HEzQ4Y0BVvjLZjTqhuOP5X3YDI8sYnDAi0jmRyAzI9LIQQOHASmlajEuI9UF402p5Ww6ynKGYVuG qVp/rZmBZZJoyrdkXWJggF+acBZXpXhjGPafmHhm1eUtzrlpUAUHTdBZQBFIVtADCJRFZmZmEuTY ne4IWlAAhRKE6F9rptVmQoASJChBlR6aaFlzglhnlO0AapCkhBpgEKJm7clKn5xCeg+r/1BqqD+w krWolY1Oqqo/eRFAEAQa5nopqaKpuClBnQYkaUERJJsP/6zMwlZmYajSo2pBuOZT6KuJyiXrLLRC a6s64fKjq6XlXvUrnWJgqccBxqrYKbj5+oPspMuSlWkzZvhZxwEHWvOtP9P6Uy253QJV6jFk2KnH AKxhEy1A7dYzbkC9YnUuKunaUXC/dQ2ba8f3vCuqokJGFSwfEOwazb4Mo2zPv8QGfNXAjT3rRwIO QLPwPw3/8zDIowrMGnWn/uGgzcRsnA/L7XwMUMh6ipZec272IYTFxahsT7GThsprvFbNa2q9gIjx wAIpr/vOpwXxrCxz2UZ8n9B5DMEBM0fbk7Q9S2/d9M9Pwxc1H70UIMHNWdaDNT1aX8t2UyO3UnLg ZBDtjP/Z7l5ujstrw5yB3bmUYS/kZhjwgM6+POop7e7ofbbPVgFtTMGCqGFAwsYUzs/h/CSuud87 TSwzt1KfIYAFzKtidT+ms5N5P1xz7vVoYAdfRk+DCkO6O2gTq/Y/3TPlNsUz75HGGOejizPSuN+j u7u8I+X7doDTwxsckABdGC9Sp3GYtbi3uN41bltggh0bHuAqW1zPcuUTVwUVF6vvASd8YmvDAxJg Pkdlzzfrs0f7ivK+5wXgdfKTwwMUYEHWrQNv/log+vrHlP/9LQBh84MdIOSLA94qgUrTIT6w5TRt MQp6EnyDASYniwvi44Tk2F49VngWD7JJCEEEnRwCILr/WNRPHenLVQr5wUWetFAw8cMDHQQguwHM 6n6Gy5869rdDvjWxel4KYB1MFgAEQOAWRmQXEhGnxHYwkXFOBBYUYwiHXpCtFVZsBxa7ocUlbs4p nSPF5wQokSFoYACzOOM70ni2NbqjjUB5Y+vieIc5VqUCqbShOHD4Dz62jIdF8aGFBGmyUobBAX5M RSLvtsjkNZIej3RgJOkVQUq+QSpiGEDNMFm5K2awH5105CeNEspUjHKQxmwOMCuhytNtEhyoY984 jyLLX7gubnMYjxggoABz4vF4enyHL9G4Tp4Is3bElIgxnROAwSmzOTkDJDiUx0CJDuWBT6ymHPOp zwAg/+yhugzHO7MRTmjOMyjl9MQ5izlG9TQnAcTpRDvXwUp3ufIeXMOmG2MGR7hFr5LxEcMBHmDH UNiOX8d6pjkGMAECJuCpFYjqkQzarK8BUXwtdekYDnBITSzTHMhzB0XFwQAImNWsD6hABBzA1qIV QWIYlaRGa8nRoI6BeqLIJD1Gyo2SFuMAF7BAYC+wgAMY1rCyG9WbQoqRlJZipQrNKkQZ6lBLzNQ3 fE3PTWOBTQGwaAMswuVbGbpCi1qknrW450+vabcASKAAmzhqzkBFNVgM4KlPTWtUo4oEMqBBbsn0 7VEOGsirhjCrc0DAAyw72TymrbaeSABa24pMI7BhfP/jiyZD4TrNt811jnWNwwAoyM5uarKZYt2g JyQQWAcgdrTYVYP0pMdFxl7EsS8BoRDT2VLqSeKy4ygWbTMhlc/uZbvmva5zxheA0u50dVDzaRSv y7p9kvARssXfcytxgAQwgLdEEG6I5Ts/386Xh/atCHH5lNAxLrSUD2jLI756w4CaY7N/eICO57ZY Buv0t2uIrzobuF2cOK+n381neJUcAP9OQq/pyCw2tokIBligAghAACphU+SpvGnBJI6kAOorFPwa Vb9iRIbfYKNcSgBYGzVF31j3wCIHjFZbmAlDgoMM5uY0eJymdQhqcaHaCQe5wvNgwAISkeE80tYP B0D/gJXxquf4dLkXX25un4GM4uFWFXzG3S9yIysGJxeCxrtE7z0qNccd87jSfl6wiP384/kCWdN/ jlKgH3LkWU5yo0BFNBkMYOpBQJkdUn7GNucgASzzTb6w5jKtqRLrEof5P2OeZ4ohYmZLQNbFkgW3 GordhzfDM9l1mbMYZuQqasu62np2N633fGu+CMHBseSpr1+Iz2ArOc+vNUSjATpgNRQAARaI6aW5 09FLw1vImz5xcOVt5E9/MNRpdsOIkZGGAjwAtoFA9TjCqj9rjVnHWs2Su/GDZx/T29b21u60mxdX alrUlsI2OBUFcexyoHsZ4woLBRIAW5hTZN6Wnjmm/3VtbWyTOSfdji2aSRlujqMKQoAwtzXi3LJK KWADU+0zxVfu0lkzHFIKxnWu5/fgbZ+i0NakMHhtlReQC/CfCATVAixwyHjf6ehnN7HDNy725nJ6 4uaNyYpn1WKrq3nNcfC43esgcm38nGIOsMDkKm1vs5Nd1mOndtqNnl0iz5wmvbbn4+J+6Jy3QXJ+ 6Dk5SF6OCAw9MiSuN+CjjWmlP7zwgPft038SdUl82/EahzzzsH4HrauIl+n4+lTXWPg8e7nsoa+1 iXXPYHzjZNCcpeXcWTv3OlgAuvLFe+zoUAC3bwL65DCAIYkwVjIggIYLJ8ABBpf0HhNe04YncRRG Vf+ZRjCNp3EvBm51UFBisEwMYCsE4AAYsGW6cHmsYAAOgHKwUSltNQYI4FaaZgBhJ11EhH0qJ3p8 xn3OIXMFeFHdBT+/RlfBNn50MF7q5QadsgBR1VUUcCAteFsWYEfAQHvXoFYJgEq9VzNj9iSFlAEN EFX9hAYKYGeYhnX9d3S/B4DBRxXDVxPFdwnHh4BVJ4akhEtxMCwV4FAUwAEIwCJ0FwAUgIT3AX/Q gCG9x2Xjwm4CoIcKACXjM4XxVoIQ5XkoWG/bZ29rB235BmGOI2Gs91vCtlFANHlq8C1pGAAEMCIB wFSVBIdFVYHfxAzyhwH99GVmUC0C0AAaUACbsYr/A+AjAqB/BtAA1WIARWeF0uZ/BSiG2PZnA8hd uyZKB9h0yad8g2QGEIB4tnMAGHAgDsABznhhyReHwXgJFsgJqdgAEEAcpCcGhbIZUPKMUPKKZaAA EWB7fBcBD9hQYNZyCIZ2KRhzpteCLJF6qbV6wEZ+NMhRQmCDOCgGz0hHGOBQBDQPFHCQktEIceh+ kXA5CXBSnRABE6AACiCHETcGNQOOEbAATPiK0AaI3PEaVyg9Wch0YtaFOvGFGDZ16DSG1kZKt/SP AhCQw8F/BFQGA5CTfkaN22E6DCkIX2cAWxaPeHgAoAV2r1goGdCHawCIVZh72fdyhwht3rcT4EcL /3CXj3L3b5LoHBfAS4BiABrAAW7iAAxwAbIzAdY3BgNAbAhwg7IgKAUwlhigGRRgJAcgh55QAAZw AV3ldxfpjZJBWJtImAJAPGUgac3RABfQmOt4h1j4fybZi51GgNWoUsN4bcXIUseYJZJnBqpiSGKA ABEgBkSnVWNAAOcIAVQoDJLCABzQGbBZABBQAQ/oCQ3QAA9QmiEGgNi1TwvEcsW4dCxXHS4Hjyo4 ZLpGgD/ZCRVzc0vWiXJ0esNDBnhkeNvHYMcgKQ0QmwQwkARAABCgao7AABRAkUWnU9M0X2GxQYWI nLyXi5G5i033WygpEyoJDyzJmcMpbui0lgKgAf+4RDrtGGZ1IZdsEQAG8CQCIDnNuQYEsAENMJTV 5pugF0/CyWSdR4ja110Qd2+A1nYRxm+rtZXS2ZWCJwayYwG9aJy2xgxyyQELYAADSTcEsHmRwFUX IFp+52V/l6KUYnLGqVCVM1nzOZkRZ2KVCYzOgnFU93j8WUoqVxUIkAGteXqoqYW2ICgPIgEQUAAX QFQZiH58gAAN4ADJ2JtGGm9E2RzbI5z1SXjuiHSjN5Wlt5zc9aAEho8yqI//VktKRxEVsAAKV6TZ +YK1ICjdWZoG4IQCUFaU2AcE0FQLQEIo2KO9F6eCCYlmZ6dFqh4kKZm8aJ/aVmZepClghFWPF1n/ MPmbzgEoZYSaBpoWn9IvOcmWhxABGnAB/VKha5qLdnqKNwiqGgqVJ9ih8EmVIbqIeoqN4venJnpN iMqe7FkGqqJo7Zedtwajp8GLekAANEqKDBdtmDqI1zY+yAKJhYiAnzp49HmuAnholtmkYfSkm0lq hDSl1toLDSABpehjWdoMrEJ3ddAAZeWDiuirxHqHh1gGbwqqcWqKLkqn8Risypl8eRphSSadfsqx trRYgjo+DaAXoRpUy4Ar0goHDDABC6AAIIed5Npy5gpxZJBC+jR66wqZofquQkaqrAV1p2qAqXpc q+qfxWR944NHBEABAGuktEqeEUMAGsAAoehy/2q6sBaqaQ9bkoK3oVEJnxY7BFVJE1e5ClnZp9Ga digKrI8CbRhAAazYoty6LmwwPBhAbps2iEs3pIAZgM2RriWbeHoLZO6KpH4LG0tacfQIQE7aklCK r1KKtKApuQWwVvEFfFvarXWwALR4YExntWeHtYfRBhQFp/AqsRwqlU4kXyx4mQVhj4TGp/vIqbP7 s7tnnYTbHAgwATF1qMQwsHIwqRPAABdGt/OpnjLbt6gSdMLVqaurfWsqYjybpFxYqkDruvk1tKJW tFbXqqDXHNepHgUQq5hbO0TYZBZQAMYybSk7rqHLUGwLoBi6sNKKul9bp89LWsv6ffqmeo6olf+t x5V0dbuTa6zNwQAjUADZOrcQWgANkAFIJG+Ol6l727zKa3S6c7NE2ouF662H2wuJS3OL+0P16rj3 qoD5KrkNKLkXKgESYLDSGAzhMgALwAARIAFtIW2n56rzdrXwy7AvWLoQe7pee6yqK7+5hrGK26yV 8Jwl2nq1O4AELABmM7NrmgCc68J6+QuCcqMurI4LQIHmSnG5u3LIy7fryQZaNLHdyMG+J6qaWr0/ S3xBGzTam3Fsx1LeO7NCEL7fm6kKjAEZUKi3sBYZkL4KrLlsureoArqc98NZyxfUx7VcVsR5lrMe KnYgqsRW2b/3+L9oG8AnOsDVWsA8HL2xJgT/C5DAChyplDAArSwBI/AA0xK6mcp5BGvG14fGP7q6 fGTBHNeubzy9Hwxcv6i42HtmjRul0GaMKczDGSafLrquruXCOFzD7qdoDKDNEGDNngt97HvL3bK6 lWzGvTm6bkB9XXaRlnyc+IvErcucGgudMwit/DjFVdyjEPt7RKDN1iwBd9Kv//zP2lzDC1B0FNEu ErzIxruzZ2zBabwGa+y8SOvGumi4W9gI9+kS+clo+wm5zcyq/wnNjea00gu9PoqJrSzIJnDQrfzS CH21zREu4TzGmOvI5uy+yRlPv9qJ9mvEYJu/fja2c+HJsQvKUYzJ20rKQLrCBrzPcqrTVdBZ/6fH Swutww2btzHLy3EcpCkouPGps9KL0TAHwojHxPyweOiSmTTbzMysZvo6ua76x4NLkreMc1SdyhR3 ODXNpi6G0ykt1Vm9qYrIs/zMxmGdybgWzxnbiBvbvnKX1OqKz7kLpH7t1kAMpdbVWW+i0A1HwfV7 0rsM0b2MBlQWuDgLvUN8fR6c0dk2x15Yx7/z0SicxyJ9tCTtx1Zc183LxzNI1Zs9PjRdnDatpYCt s/ELcUJMycR5yu5csUIttvvbyYy4LSRqaJwqwOA1xW17ylBtioKNXMG9y2Zg1Z+tty/o0KN9qaU9 PjYLzOxq0Ufa2mVtzPLKpFZVwm8Nv/vNdv9xvcJzvdthrZ66lNesjctoQ61jzMgldtw9Hcln8C+F PZmHnbpBDc/zmMz2ALvhF4OSjaxlfc+lTMWVLZ/lrJ3xu5njzeCenXTorWDqXcHsHccTTcbPK8wX Td8N+9rHnJKyzbjLDNLaedsb/L19LN/TjNJ3HV7A/VZ5NtzYV8nGjWA+XKHorLW19cP1287v+M4f mohNS7ZG3eHX/Yh2rd0a2tTd/cffjYiLTEi9xdl8Yd4ujssTXNflesFTWX9K/W5lPN/EWMy+eN/I TK+qesLIF7nQfD/SLNrY5qPTaeDBXd6L1NdSzq5U/r5WDt2EDbAULqeIrdSpvYIZLs+OTc//HQvZ It7U+YxnbY7ZWurWKz5zLZ6iL85nMd7DBB7oGAmXbOyp8r2zZL3jG90SHc0ftJ3oIW20Rc7HJW2C FEy7yhvZTS7TQgDlF8rI7XvZgf3mYbvcktm1Bvzchhjdm+zfihABl7S5GPCVlLLuszDmWPmsHivK Kbu2QEygI9nc/J3ZKu7kZ0zpv2nrdj6qeJ68EZ1n793nvG3iY63jYjbo5R4Ia8giYbzFyLABGFCQ FqLWJMPW5ZvKQo6xKhzNkJnkhrrkvy3n1s7XxO3XwZzpj7zpySnhnj6qoG7hXq7JrZsIFU8jS4l/ cSAB0GgMHI4Jh3mOSr/0S68BEMD0UB/1/0r/9FJf9UtP9RGA9Vg/9VCP9RnA9avZ9WHP9Vv/9GVv 9WFv9lm/9lG/9RggAUy/9WDP9nOv9WJ/9VUv92PP9F+J9miv93hP93iv94Rf9RYwAX6f+FA/kE5C I4ipcRzQd7lw7JVkAJZ/+ZiP+RiQ+Zzf+Zh/AJ4f+pkP+pxP+qIvgpdvAaZ/+atv+a3/+af/+qc/ +5mPZaPf+abf+rL/+rLv+bvf+RNJ+6Hf+64/+8QP+56Pw8K//JbfJE4yASI4B+pe9ChR3XwiQPot NiEGWlPVmcv+hmve1uPMFxkAjXptXareBkQYOBrHkcyHYXwxUNvLrqAVouEumQwocBWvAf8bAAJD EAikWaLDNHARNaCnHNOzXZdBlo23j/9uwNolODwJkskE53Ck5aDREa5USVKRM2y11qIqw8pszRiY EMxlKNkU4Tx9wmnEMI1XgwHmYR6etz0gqBGWOFBA9BgZZPRVUESI4BWa7ZBMYpqpFVGW9QhQUKRN XsqAla5doZrYtMW0QWj05SjWcm0ZobU+rdUcYDx0rr6i1g1TGoGKyikCnaIIugp73h4RDAoMNBR8 Tk9bemeyxQVghF9ycTggS2UJjVzltXeRbRShiP3JkeuOmw7dMcGAgwFW4rZMCVDnoD9nAtT9+EPP lCCGerD803TMYiYdGaqdIzXpAkdWVFj/OHhYQQ01fLsCqFpjihkNDSQpcKhlC6AZNDIbZqwx0EAB Dg1K0roVYZa3ZChVturWUkY0pLiGYcJo9SC4kJ0mmQuJhcOFBxU4rBSJJGGeeK7owQ2Ac0EFDTnz 6XMYRBeuI2aKRphwlgE7hKwWSssahKxZtL3GTIxR1esrrZqIgdwaxFJmyvuM3DtHhQOGPmibonIY 86dJZydwEsZpUmfn2if6BX33pOgLAhwYiHMdw5htck9Im14ZNfEnGpM1V1aMLyD0H+Cq4yFlDikW CRwKCPDOjaHldzAzx50XYIGGBOvbg8nHXBNul6zJXXgR4EKFUeHKI8ZRHOKF950fgFCE/41nLuXm 10YLtrJDcRBS5wNJopVgwQYZbmjRM3rF1KBUuTXAgQglwkDLTrrtRcB9Dx7BgQQlcDDBhOSsAgFT 2JmgIYedjYhZDRVR+AyMhhUZR1c88mJGWFYVgAEFAUT52wLTlNeWZfatFcQAElwwwABvKBDBdGLM FwdfQB2EwAbrIMCBBRC4SAiCJQTY1BBRTlklA1d2AVBA0SRZoV5JMbkZDzdCuAllENwFKQcKoMaF alxWyBwKBkwaAKccBDNbMzw9UZ9B4YCDAVl2FCIcCsT95wOkJEhKqWs0Oacgj0c2tGWSM1z3qzx6 bCcaAU4EcOyOX7mTx3nDTvfZAAekeP+AE2fm9ZJfpgKZyQGsGnAAeGIllCePx5agbESCthHAcwsG ZCevRXrEaHWEWLAVZF6l9lKIlc1E6qkJ0SbwET6JaO/Anhm5lLAKz3cMkbtWk5WhwnoUJMYd8ast swu79ICv6Ik0Dl5pBuGACH3piSGSJTAwbkkXJYzOnSYsUFChmuZmZKI1cPYzuUOzaaelHoMUVXbt qjgqiweJFfVUScVq8JERK2zVvJiOvHGwQnvYMbzNsvy0zYdihQ6an5GHtDBDG3Sx1q2yu7EWNU9t dw4Sgv2fvllfhKm77gnuAOEBm52RTjBOgjDARQcnWgAKNFCKDxsSrZGrevtsMc+JLsn/Ocdzv6hY AQgg0McBCvpgQQaHq+dXxWpny5oBqBeUemtazKz1NakLcHovA4wXQAMaGs02yF1GprfcPW8NYdCi 05254B0JgMADcmr/gPcy22C48jwpXvDTCmwfAfreP5Ai3iyJZcADG2ggP/vLTl45LRt8ziu0iOet b9Gr2POY9DXq4WhuY+sBB94kAgRIAHamEF/pQGYy+SiPgRo4Svb6w7LHtUwtqopAGhDgAP2VgnKW 499laMKSuvWNQSB0EOC0xjcEvpBc9xpDAEA1Au2lLAH/A0r5VgQtLBQFUH9yWw0/mAwGToAEA5hS DSg3Bf4tjV2kwBXn0padAhYpdDFE/0bHKri0AKzOh9kLxqZQN64AiI+Ju7jg2tAWAAQsYFIwWwB1 tDa329WoBFOMQQMqYIELZMCQiQgAFluINrnVpms/A2O8BuiZ6Y0xOH9zIvYCYIHtPeBKQETBAryH DQFQkJPmAdjiIokEDbxhAetogK3MCD/uCCACb5hAAggwxZmoMAsszKLZbIO1TPosIl1C4AGRmUDJ jc0AFbgSqCwQAAk8gCmnGEEqZ9ggOtYuNwmogAKKogANEAACkVAlvzIxgAqkpEZ1oAAtZ6DCGDRy ZtVrXgzjtcUmzuyGzswhLneovSTEaRAHjZYJOODQu/Aucaw0H7SWaDwOuGiJpdOXnf8IYCMB+KZy Hi3PPQMgKaPgUl6bG6MXk0FJ6fGgfwOlmj5t2SSNuWObzXhfdHh3sgwurJiFsenddtecoO5UduPT VCRfytHkIYp6mMQhLzYJucvsK1rh7CP8iui0Iz7ukcwa4j4sdSYyKNVqbKKh0pA5wHYwM6Yz1Rw0 odM0ahyViGn14k/tGFGhtrOrZMurxtQiHIK+zHlM09xA6zXXL+qQYWiaR9dUKTivErZXYWUiR0t2 tNoBtKoqbWsXZwdZHIqRqi6sKU+VidPZoKe1UQAnD/3KJaF2kqgMMqqRZCrHTGkxsf30bcAGOtXH AiKlVzVOVs9W2292daJG/OAtIur/zciR1SFmVRtaBaTMqx6ztNKxWVx921ix2dUWiEtm0vZq2r56 DK3L65bLzjjY3oZQaYiFayb9yVjqOVa1oi2oZCXCvMoulzWiyqx1q3u9xHQWq599bnPHmx49cJGl pnWpeS8ZUwFjmHSyNY80croR3XaOdhSG3m2zC9URY4S3q+jwdZe3rpsN98XsxdhxQRw7LLmYuSTj LtIUg9kdE3BgYsWuZeeoVQqH9rvWBWBxxXtL8jqzmT7enT4X+Nqo6nV8tJVku/5K1sDa91SEpfF8 ucxhfm7MvwlsrEC3/GPyANTJQ14xV612ZMYxT74blZqE7QNl7wb3mQHEWEtFi9oP/yOXraytcZrx yuD2YtWnGLTtjIPsSBhTzcTVze+LbgxnsL20ysjscaQDLSBPy67CZgXulMkn3a9Sd7MoVqslnXtW V7dKyg+mqart9tZlZlmudqZy2Lxc4tb8j2ZcUzGZAXjdJQ/1id2ALWbeJuk3CzfOi50zgOvc6jt/ Jc+P2TOCaz3lP7tSq4JOWISFbOgtRTnRISathpeLbKlCetndnnSbK71e9qKYr5uOr5mbbFhQb5vb bs6t20wdblQTV0gAt6Qz1X02d3sWLnx+S3TVTNFcK/m3V/Z3dJ6Mb0QX89sa7/fKyfwzLZ+7sGR0 tn4R/j7qUvti1p4vtil+0/vOmP/UzLY4fxU7YiT/KsA5R7cmd2hgl5c4wT1r2qWxomt6E9reqXk5 lpi+70ULrdE3frTOW81mvFJa289WUWzj3tN715HhLXb4p+1e1FDj10PuZSoMnf5wqINuUVM3jHJB XmjGj5zvMjT5dDWb8l3jFnvbBS3MhyhzaFuZmCMHG863/PaZ8NzSJ/55r4KOMppeW+UPPzrlRy34 1YK76Tn2O5i7aG6Be/zqGBI+ZNo97GPA22AOfhBugx3ysd8h38mlK9qjvmFHGzfgiyd22DDPhi/j +rIl03TeFdxwlksb4jml+8CzXWp9M7S/GQf9qhUvcGDjWfJlZbfxj538py0ffXX/nuM9hq9F3wCu Fe7NnLHZi+7pTem5HXpRxl0dXN0VHMnh3VYh1d4VDZrJXe21n9EtHfxhmeFd4AKy1O9NXfBVmJ4Q 33YVmbAtVisp39fFHncYTfERmbwx2YV9Xu8J0PWtXfa1HYidXggeId0d3OrxXorhhdAN3A0qnVMB HvtN3Iu93/Q5IMbpGMd5BavZGQvC2v6JXP814AyenOVFn+w90RjOlssdYNmp1Q92XaIcW/yJDgQa oQQ+Ffj5XNwB3RO+nlRIYRMOHvkgne15mwKaHR7u3gnSn+9xwA5QYiVa4iViYiZq4iZyYid64ieC YiiK4iiSYima4imiYiqq4iqyCWIruuInckAIAAA7 ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/EquEqu1.gif R0lGODlhdQAhAIAAAP///wAAACH5BAEAAAAALAAAAAB1ACEAAALyhI+py+0Po5y02ouzRmH7D1pd SJbi2KBXoJru1CpxNb82Ux+5tN822wMEH0MfiSWEFFPGps4QXOKczs5QusBSMciIltPdiqe37y9k 5o2V3JG1jHNvuteMPM1mJikxuRcMFBj4lFQjiHKYSEiG1QeltrKHR6QjWMg3+LT0ZdUZl0nDhDQT xpHgSarCiQqX5blnKnP66vj4MUkJGStCiOhQ+nsyS5YLZBsKNXqslwezDLvSYkzjO82mTIz8CLxm F8a9qy301j1HDp0VGYvb7TceLG7LvnZ+nr7Zu12u8Z0sCmPNzbx9AAkabDPwoMKFDBuuKQAAOwA= ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/EquEqu2.gif R0lGODlhjQAkAIAAAP///wAAACH5BAEAAAAALAAAAACNACQAAAL/hI+py+0Po5y02ouz3tyFDobi FXyQOabqaqKNu8Yy2UZwVc66+N2MTwHuhsFS7iGUJInMhRG3WTangJw0cfVQtz9D9vDtcsfgqiXs JKuP0MxTDW+zRuwdOhi7I71MvbPmZ1NV09FCaHOoBQI4x2dWWPYoFpkFY3SJmUkpiYUJlunp+BiI 4JKoYCm6B3kagtJTdBlZJhRq9qVX17P7Y9uLxWeFWkk7yAlMCztceiZqpaxxynuUikjNe6z6rOrs pshxA1QN2ez4iuSzdFeXzX1LvUjyqXwV/pZW7nXvYcqO4X/i3L49wgRBARhnyD2E+Iq0S6ij4MNJ E1pBjOgMVzlSJhflCazYBlrHiOeMGSRmcqRKZBxXrhTpMubBljJr2ryJM6fOnQUAADsA ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/Equation2.gif R0lGODdhkAF5AcQAAP////f39+/v797e3tbW1s7OzsbGxr29vbW1ta2traWlpZycnJSUlIyMjISE hHt7e3Nzc2tra2NjY1paWlJSUkpKSkJCQjk5OTExMSkpKSEhIRgYGBAQEAgICAAAAAAAACwAAAAA kAF5AQAF/6DHjWRpnmiqrmzrvnAsz3Rt33iu73wtDsCgcEgsGo/IpHLJbDqf0Kh0Sq1ar9isdKTt er/gsHhMLpvHXIJ6zW673/C4fE6v2+/4vH7P7/v/gIGCg3oDXGeIiYqLjI2Oj0hphJOUlZaXmJma m5yWhhwEkKKjpKWmp4iHnausra6vsLGycJ8Doai4ubq7vKIEqrPBwsPExcaaQGm9y8zNzs9LocrH 1NXW19izyRxAt9Df4OHijtLcodno6err7HO2n+fj8vP09VS3qrbt+/z9/rDvptkbSLCgvXP5/ilc yLAhn3e14hmcSLHirngCHWrcyJEhxIQWQ4ocuQijuXcdU/+qXGkNJTyXJGPKnHlFIkiWOHPqZOUy I82fQIMeifeLm8udSJMqBQTTp9CnUGUSjXh0qdWrWN00NTp1UQEECIAYKBC1rNkvU32+UkChg60I C7LKndvp6MuujDQAgXu2r98pXW/qazVAr4IIZOkqXjzJrlpGoTowgNDtr+XLSKYWrUyUcCgPESAy Hk26UOCTeBHdcnvOG+bXlzVT1UyYgoIgt0rr3k3rNGeYiBx0SDBYH+zjf2U/5lm5Oe/nz+2Wk+26 TOfWyLOblV1L+mBOwHNDHz/a+/JE141rXx+UuuDW4CWKJk+frvfZds+kV8O+P03q+NEWH0Tz1Weg Vfe9R6D/dSjxx59/EIoE4Hl1nVNABZwdqGFS3k3XoX7veHABcBGWaBCA3QFY4QAeZBCWeBvGyNKH FIIYgQegkWjijvSoqCB8mbyjAY6hASnjkRt9GGB+ZNwyJI4LLMjjlOKouKSAQVaAI5QNIullQ0r+ KGUYBFCwpQcTyEflmtBYWeMmAyiwwZkeFGDkl3ju86GHVjZZwAEHJIABAgeoyeahvfQp5p2VdFPA iFXlKSk7e17JpBj8PXopopziYuVmlSLzjqbXTWpqNpVamhoYDj66aqewkvKpqpFeMiqkpZ6q6zGp LjqmFxaO+GqsxDYy65vfNXprrbs2O0yod6VKZrDDFmut/2q9chUqJssyG0dhadIygQEELNCAGghA kMcCGiAQBwZqQKBBBqGMCwi77sZhAQHy8mcvKwlooMC38D6gARvghgKvHwZocC4t9BIQQaEDPDAw HhEcTEsF/C08QMSxQItsdcDaQqqOQxlggRAPDgABAwMc4MED3TzQgBMESEBccUBcQJYDDthygTRW 5Lwzzyx2k0FlRqkGQVzdtLzBAJMN0EFuKr8zNWAN0By1N/AO4IAHB7zjM85LD3GLB0FsoG3axobq K6ODVHYy3VpZXYAC5DKAAQY3FxDBbQN0fQsDD9xR+AMJKFAABH8nQMABFBCAAAXvKCDBABZI3sfi jRNgwP8EGFjgLgLCToCAAgqU3fkqcUqwuugSRD4AAhYIHoReke09sOnJ2hFzBQcM/Hjkk1ceCgVh ASFBXMIzr0C+BDRQuaAfoVTBi65AS2u1WLQ6NMpGRBaBBOpSVljs3SBu3PZCPADB/PPf/E4DFpz/ dDIDwJX8LZoLxdaiEAr8na8B0xtA1jw2gQlIoAISECCIFICB8zkAATtbGvHiAYHEAcEDEJDABgxg AI5BIRQHyID+DBAlQwxAAoQbAPMe5BYh0I9+O1ueBCQwuIpRAHMY6Ek8EJAmyIgMNdvyRCg05a03 DGACHiDO2RRggaBp7n40uwX81rAABnjRi7cJhQEyQAH/soSNAlHiywEwZIsrDmBqDxljGT/2jgoQ J2xySpzqgABHOBEAAxUwwBvfYYHbEO8dEYAZECYwHMRNjo156BkGysa25UUJhnUs2ztYw58vfvFF A1jABmi2gAgk8nIDCBs+UILK4PkxW7/pE6tMJizyEYEAGkiMz9RggCBesYBZtMUGM2OLA+zLFkFk 3luihMpQ/BKOBDTmOYL4MUESYGgEcABl/qgPaDbpj4mB49kIEMhQ+E8fGhDky4b3q8wQYAOJqaQy cxZGGRbqHDVsjtps4YAsLkAyt8Pc0lqjrQRMoJ1jmFU5oIU3piwrV7QoQBAFdxty0fGXi4PIFtWg gQ14/9SjGAqFQRW4AX7FRZBqnEBiqjZIV7pjACM1wNQKQAFyCXJhDjjXGu3UUmQ8UoFLK4DsRDeA DTYgaGoogEQH8LgFGGCNLv2WAicqrKcRFZOhOOQm1fPRj2aRAA+A2eUe8FGBNgc1zfTMERWK0KJR y5ZqA1rXFEmBBljvdhEQpFArwFMESMCiQwFCXe+aAAvYFXOOjBME7BoaqoXrhDI8LBAeMAG7UiYC DaDcBxsQgQQw4LEJLapdVVq4wW7uAQ4Yo12P6gBlLsCwFOgnyZKghspytlCFlazhYoYBdTmzclEr ghglINkgoBKz5/hnPYE22yZ5b25dokS3IOrEuTrqAf8P4OnLCFAA7FrUZjCqism8q0DsBnOcCsBu EJoW1W919wGChCl2g/bBAkQJrIxzIW6ChN+yTc68bcMvdm+2ALIcALvv3K/iKpbf8qoXCAtDwIMH cDb15M1yD84U1CoptgdAbX1fW9GxkDgrKiSAvrek5abKt1+W2cIAcxSCXxPjja5Up2XdOEAQa/zC ++KYCa7BMX8SEFLcPA9pZHIxjy0HKdzo8wLUe0LLhGwLBFAzajldQ3DVFuTc4CYBmAvyoNSDLYVC t6F18MDmLszUWqLZQQ9CWJe17BwHNShZCpYId2CkOIR9zTlI5rMS6YwdPROaZ4KmQ4u/syA6EyjO bQj/cXAd3SUl84St31vxEwJ4y7caisVbztCPtTxlmNyYynbuDJmbMOcW21nSP0YLy/R8Z1e7urlD gbSSyUxqXXN51vqUc57bOku2jiy6enCjVpaIK2T3BtKvDjGPi6PqSP/ZyzbOs/D8jGhRO1najRI2 k/yMnUfjYdHCDm+wEy1p4zha3QUaUInPTOwkYHSf3HVzvc1t6VHD2cm0nvWSqQMfyCr41uYueGgB LiBgiwfJ0fB1LGsM54f/Gt0Hn/K/y3xEhjpbcb+0NrObuGxoq8naBRIvykkNcFODW9HcPnSlv+3T Q+OF3Lx+uRzQzXJ4Uxzc7a54v/st77V6HNe0jV11/zjQgaY33QNO78BBlfBzhvu73PFgJNObzvSt O93rX4+62Lnega6X/exmNzvaxQ72p5N97GtPe9znLve6k73tcM/72eFud7uH/e55x/vb477qOA+b 4tE2A1vxoa3FF8JlgWQ0y5qs7WfzudExB7Qym6GXZmCyGSeRvNDrPG3YLT7T3JGyxCYWZNwwsdxJ D3V0uVzoc6ju9EjHvbSAwDsp6f73+8aqjoBPfPOQyPDXRvyqnbt4er85b1bf8t3a2+vLz7nUohGs u47+reLbWMu9Z7T3PU79UAjfSEdPP6Z/MXt3o/r9RZ83ib2HM3FbON/gc7HsgUR7979jAsRxeoE1 fv+wFwoHU3jql4Cxtk8wtCoEqIBNcXJeBmuHx3HGNn8KFUlDZxzTV34KZ394BmjvME/c1xsQ+H18 RHoPuH5S9XmlcoIwmBai9nDv9mcqyF/k53z7RnvRFmevt3yghoDclnzudnvpN4AxaGHrA3tJ6Hju dH6N1oQxiEQYR4RWyCCnd2zUtXMb+CDTVweIxnLaRnPNMUMl6EQrOGlLSIFpiCJc+EL1xH9tCIEu xH/u13qU9nyCkIAjAHz1J4ZK6CpwpX9CSGnUVmhPFIDkx2IrOBUHiGpSqCK5Z34Dc3yRCIOggHnr 1oOAyHw52HhnCIZdOHKG5g6E1okrp3mg5HgmOIf/PcWGl7hnLUg4LziHwNd4p4g0Pqdz0qV7WjiI wmV/PthsC5hi+yd5GVdoRiiAjBiLawiJtiheuQaFeOiMuEeFW6Z8GseEmKJ+OqiHoxaGQPCFMGdy mFeD2SdD28eKaCiFRxF+6WaNpiZVcFgr8qh7dSh6CudtVoeDAviLn+ZOgAhpghiQxliIV+d/9aKI mNaMBOiITBiNBOdOcJgaEsmHEriJ8gGC3eiLGMhQCxZ9HKhvHhiGiZeK2UeC7LhslygkKniP+cGF Ljh7F5mFMzhp2IeOr/SPoMiMETeQufGDxbhPxziEh1iE67iIwhWL59B70AiTQ6kP1LhrNSk3xzeB /0d5hR2ZfgD5cbQwiuOob2B4iieZeelohisZaWkIE1sjh1AZb9BHjT33lorSfqPHjzNoK7eYiX74 k5xoN+NjkESJkKdWe//HkPS3lI3oEk5JlVA5iRVpiVVpbBmZcBvZiUmGj9/olU4Elh04luZ4faVX GSoJkq3ojgZYipM5j185k265mm5yk3dIcznpj1z5kQ1JdcIYlMSIdN9GmP33bwSwjEqZYm3YlLUW S4/5hHEYhbC5J9iohFfYa554jT0ZivTIj14oluVofQKXk2WYlBl4muMHE/A4l1XZXkEgl6lGl2Fi l/s4c3kZbgmIekqim0AZNQW5b1Unm8nobol4hP8OGYMQKYR0CZkNKJnu6SaViXiXmXjFxoe4aZov JZKZQpKg6Z1jKILLs4oUypKu2JawmJ4ySYs0uaA0Ipt3uYse6Ad0uJmCyYOX6Si9GQ2L5p9E6CDE mZvG6YxOWY2TOYlT2XLP6R5XuYm8tnGZKaEEWqHaeQvkaIqh+Z2jCRFo+aFqiZoocZ7tSaL0yJ5F 2ivwGWhkapseWZ60tZuAmX+/CX+FqZAB6pM9+pCMGZELiqCVeHIoyqCaaJl+6ptF86LXiXuK5pkY 2p0UuKHp2KHq130taYAv+ZzqWY/2GKYToqL7yKLcUnxdyabSxm8qlpzEVJSGSJ06Kp6JOadNiJz/ dgqbQtqcQLqnRxGdyJeVtiprxAejnFmq4thmJKeWU6qoE3gLVzqe7fiAbHmTkvqGYCqrKIIauZiH ZaqXgpqEaZqf+rCfgAqqOHqUdgaAAqqYq8qYChqkFJmgemqp5tGgFZioEbqXq/qGT+qrqtl9wfqp HKqOjUqe1pqa8Yaik+qa4uesjoGpumiDcEkIMJgiCyuQfxmq3BiEbhqcyoiqJTagdIpLolqkr3op 6mqk7DqdSloynDqhaYly80qvu1p97hqCi6p9hMqvxWee/7qsXwqr6Emwq2SHdymfK+ui49eH1ppr 2Mpsnsqt7fef34qYFyuuGSskrXqg55qnzqmz/0LUpw76p0vqh7q6hbyai5+JqAMrrKq4r8fakiI6 sKsZsCb6mlZLNGOqk7XZi5hossXZaUUrlNvan0mbo7Znsbunqmn4o45Zkx1rkW+LErSKldSplVpA gF27q/jma1G6c2QpgToZnjF7tuVJFFwappNaj7WYuDurj9OKh/Q5s52qaWNYdUkVmPx5o33rrVnH tIGLb+MaD48Yq4Y7tYj7sY4RsmM7vF3wgKuLJdA3r2ErpRqKry9bmsYKolraed65tiU6cV1qtbio a3JbenSruoNan+WjphALhEtJqgkpnDuaqri7mBobteY6jbBauDq7uEi6jeYbqEFrtycbjrmosv/P Z5KYC55WCriSKLN0KBEiGo9e+pWie6LAaxNxC39EVzfGy5dDi7cPa7TAuG5ER7EACq5y2r4ESq7p KrW5FpknHMEBIby7CaHhY62R67WT+3DLa7n36rLDqq+bK73I6q/V+5Zsi70sLIMT7L1IbMFJeLys i2euq7c2ir5vqr4GfJ9Om7uES6TLKb8eS7q2YL8Jl6QRq79TGL6/15kWCqXcybwti5ITWKxJxLkL KxGfC7DMirPZC7z5SG7x2cctem7IysTVkqXZiH8djLR2qLS1G66Ce4IF+pS9m8LoWrVFbAguDJQw TMb7y5TJO3MXypo43Lw6XLY9nKUhGqnuOcT/lerF20uDc0ubSlyeM2xLhGxhUEx1spvIfmsL69u0 jfyAWayckTy+QyrM9XukYYy/UUlAUijITVTD0rfGodzGZvnGVUxwCOyHnluzqXzHq1zJexytFNyP gXCJQruWMgqqHByjbYq66YuIIny39Et8j8y794inv8vKl8yJmXwP7jjL1AXNIwnK9irKbkyaHhq9 pjy9qGy9s0jEXgy3PJupCJtoQNvM/MvIn/rENYrLUgzCp4qPGFvC72ug8UvM86vFEQzG2tjSjxuJ AO1sAr2dvypnOXzQBVzKDDzHELHAOXuRoduslVy6fHy6FfwHLenMr1LLBAm7e5vLyLjLC6nR//Os gI4YHu8QF6xlV1PhON6Hz1i9NyeWUw5AMfHAAKuJwVU4vBxZBXOo1N4y06SYsGh409WM0Gbrw/1a GIb2DlXjABUQW6jlEgowdTN7vdI4AawzNqglAYnxDjbzlq2Mk0gMy0yxljH9aUzNmxkSxcApcArZ y7db1fRsC1kcCgvgWzOmQCtDAANFR1/NnDE5ZkXVPMQzRhlAHCNVlSz9n47rz2kI17ki12FZ0yxL vDhNrNcsHY76wxDBOxnAGhZALl1jC7udNRfAYUnz1Q6MSQngAediAMJyEgNFTjIFYaEAXjAJrdw7 zvP5OW+Nwei80RinrZ49saAtnHEqzyrtyP91ejsjIi9/wgFoXTEVwDor80Hx4AFoGowVCVZRomac EzYHIDAKAAF5SjmhwFzrvc8Pys44k9Rm7Mhfq2s3XNDUnLkjmNBxrNfIujUHI94wA1XJsEObEyKV wRoJ/NCoJBxAMN2LRAE7pEgxMzH8RF8XOdmzSXqWfdHBndEiTd/ZeMux99mKzMvLnXpXPLi2sDRU ZCdQpTCLxmEEwDb+zcUjtQH3BeRGs18FMAH+VTE3U5O9LbJjzMxtmNmz+4FqbNyjB4LJDbPYudOH vaUV2QERUFMl9MV28nBmHhlNisaYhAFvzuAYAuSToWe5RADHBDQwGc7t7c5H/RCuKNzFRBb/QfBU RWvIIH4A8ZVz5DI5qC4WFBPrIWy7srTlZ34LW3MBGpAAas5OFrABCf4gFbABkNKYfengDXgAG8AA vv7jJORRktPT1G45YdbhLxZftRrrB8BTJkMxShXD8X2JDVABebUGPp7GAMyLanABB5WLYGbgibMG NzJZSI7XOv3TCeySJGMAsgNsCzJSc/zQN6beuyYEns7bdcQ7NHgAEnAA527kBQQKBHDhjY7UpT7i pxcBQZMAEQQEVZO3HX0ECXo7DfS3EwAzDHDjDKY1dzacWd7ETGnoMR8ziKmQfFPCXAygG94hrTHn UMkVEgAz2OEAanBU6pUAiBEKmW4LFKBJ/27tjHB9O7ewS+qYARiA9L1auU6UAX7z7RSQANiT2gSg iBZPR1o/PSQJx5/S3HvN68wtjdjWrzdb94mZ1iGSQi2UTR3wJ+MCSodET38DAdKk8VQv303IF/XC NvcWiE5NTGgCYkDgFhweCmyeSmwT2VfjEvHMoyQc27q7Z/Po8zw/vqJbbXvC75i9GnrhWhHgM5oF 2efiPAxORJQPGM5on4vn6bbQABtQKNTE5+0eVSyCOUvoABlwG9XNVD1UL3pB8Dq+4nm90J3r79nX pTv8wwZvzKTv/eYMYWkjPQcl+0XW/FSzAWFxgA4P34kP/rg32Pyx8DtGIOaFXfJy//dVPv+VBAKL NBDD0A2OQ0ILaU7JoIwESpbEJD29/wODwiGxWOQYk8ol8zJhQqNRDulSQkQMnp6mgKCQejgCA0LK mDYvE7vtfr9y8bm8TqdzqPb9nU+QMLxQGEgcEFQoMMgQMA40PD46ZEAq5jBelkQ0DCxAFBBAlKCo HCq8xHjqJDwY6K1NQEDKztI+MjTc5tbu8vbKctz62goTE+vqQlpoFvsGMz/LMlA1PAwcFA7kdh2A aZ4WSCAMVCwsKGiYYKqvr/e5+7kP5MHTu2ts4G8gfJl4bEQ0SuemwIU2ctyUMIBvQg4G+BAwmoDA Xz4D1PptcIDBgB0K4uCANHgnJMmScND/mRSYciVJPmwkmGLZUiZNN1QKWNhwocCaATsJPGiAId+G BAYsiNowYYKCgDXfQa0nJ0/UqnZAlmBjyQ7BkepUCsz6MqZWsAUwHCwhsZFUq27b2kHHFurbunAH wLQbb+7du67K4mDD4IFYhOkoHNDKbjEmvXflUXH8rg7lOWFJdHWpOHDlRhMs82UVJ0eMy30ln84h 12pq1H3ytnYZ26qrS4HHpBBX+YU53E9nt6UKnG7a0Vcz02m8JutV5parDvDY2vVsNdSvF+cDG/vw evJ6MhdLr3g6xuaxQ52Hfk9n8KMJai7Pmb1p3PVKp+6ud8Bq/d3h4dUUeuu5w8FWt9kG/6AlvtXk XzzCEQjacsbN0VUfyjlHHl8TyhadbtcR6IcGjznYWl7rlXhHZOLJRxx5Y5jXTop2UBViexuahtxV m23IVoajTUbCWtyFeEd/Uc1o13b6FVlHbT7K50eGBzbYZBwQJinhgQfpaFxAznmlmXfS7ZdkPUcq aGV2dyxJnZlr/LUci1JOWF6MMqppgnpm3liWHPCNxOOCu7HXFn52NZdnCSOypihnI8HkoKMG2hee d4M6JdObU9U24JrJcVXQhbZxWGeP9RXnEYibrmFdW47Wc6J/rK4I2Jd7vXgnnm9ChipqN+5YR5cH CZocgsbSqQNEbsLK31usStXmcIo+uf/go/QBSaqmk3aaopb2rTEsjGD+GF6gYy57WrNxudUsVNL+ mud3LN6GZJ3j6trsnk32aRoBgO4Y5aBAjlrVoX2tySqjUkF7rWWReponpQlaStx8ha3UcK/efkpZ qKhiWJ+cXu3loWvrpuFrog1rF9OsEoNlrov36tpYwzWWCOxzwhYU33zIlutwZ0PGxvILaAZp9B7w zkYthV+OFxaVLLGMZZHfJhhuz6DeWqq5wdJFprpKH92uxvAw7Rir89o654U013xqlvvO2O8dAD8n sNBBZw3Pwc+qbOXC9kILIMRM0rplxWn6iLFJRluNeKmgVihqoV0nKnTggnw4NsoDuAr/Hdl2yErk m7WqdKtsucbtLs4oZutwjlsH/HNnfEetbNEoLwr46HGkPd2m1SIYdbaZPq5vtxEmjKO4X5kKmphh p1sX72W/erY7wSMqb5wyEx5z65BPzG/sbjOCN7F694i7oYtc39rguStquICSn664nRY3vq3Gka9q ch6rHMhIFbSRrYxkYouf9UJ3KQaWoHT/gZl7jrU6uOWLfIHLz/nAloPnIWRgmAJZ0iQCQb0gLVkQ 5J7nzEQ8qAXpeI4LidIAKKnmHYd2XiKXyE61QRMs8Hd9SSHJ1oY2U7yMV99rUfjAU7PP0c1G5/PT C9TXE/Zhq1AGg58Q6zK/pNUvHocL/2D+KrU/xk0teRrkmACfVkXLcY2HGupQh/7WxbagJHsnlCCz ThezFimIdXeCYq2SeC0PYkaH67Pd8UiYLKKdEC5EpM8dWWi94T3ta2+TYcZQZsOIlct5ihxX6no4 PQAFMZJ0caAq34VE01mJbalDH7LEN0iyRTFnU/SXFTEGpfYVcIuqvMsk42e/G0pMf+CiYxpnYrSN Ma+NW3pjATEnIc1ZzI7DtAeJ9ugyWCYJdSObGZjwxY7rvc6QfEHkv0bpSxH+7G2PrN4drVLMPo3O kt10YSajtElMzfANo/sk/vyVw1FZM0znol49H3NPr8XyiLBTYgWdQj8nxuh6kNmU3f9C5bNfZpFy 9+HiNuHxRRVyVIz3I6OVJgalZRaxmVhB5/Km1TE3lsBCl5OjqeioQHqWdCSsZBwD+QgcWv3Rggot 5y0J+UOEdXBncQChQeD5UkrK04QNdctDrco7fZpNTS/UZEj7V5LfEZSlItUaQnm4VKmiEqhbFVFY jbi9V06QovSyKBgxyhgG5nKisktOL0PISGtpcaRBPRNcWHZMULZUmX2LKYNoqNG0Ck+aMNVpHEs5 xyKSTJtzNdJTS/smo8bLjxXlGwJtuRjAFhKcHZ2qOw0LTNVNcWhyXWwcuqo5pYFVj/yUrPEAetb4 YfZkOLTM80IGUWxCJ5WjvcpQT+j/SsHObbVUxKpfz/m7japptn+yQqCwaKyCKXa6UPGtY1WKzDJS 7IwlM6tl0VpT5Wp2spz1mDU/m8BEiZa3i9pnUb+Z15YmFbfNEaR3LxvbA68TromMR7Fu58is7la9 qvHdCvHK0hmN1Z9llalI7Cuv5XLJnc49oA+jm2HeOku4J74rdq+2xHpdVDx/7WJg1cnOdn50hIRa q99IquE5nFSeYXTJGG2aTDPCdGUk3q5T2fgjIg9gvzv0bE9BmyjpCjhldS2wacMXzgSzVpPdtRls y8ywqBKLZxRmXyOVTEmthpldjY1kcEUn1n7+1oJTjmRym4Zitu60lG+NM0PzTAff/7pLouq0sXY3 yOCvdBG8fNrl3chbO5CeN7FQCfCRk4zVlDJ5pU6G71XlxqFB17PQl8zvhrS8lf52+b8SIjVv8+jn LqJ2d6rda5r9uWZX/+/BfTykhNs558PG89TIguSR68Dehvb5gcOFMrKnVNkSt5lXh85Kcw3IZbK6 J67VFqrKMDAAD3igA/6gA55ZFTxuSADe8g5EHdDwv0o3Uce7gi2qB0uZwlYV2gqO8h14rV4igkM3 D3DBUQhwgH2YwNQRShsCyHsANIzDECRIDD9uRlxtT7me0HzvZbBsa1I+F93FPoWRHc0oBjigBAvg yUUIkIDPDOAoCZDAUkwBgZw7Kv9SBXiAIQiwgBJEZgD+DrkJErABi0dA5EitdCAxyGYeK/uocE73 hIO8N6V6dVDUdjQB5MIAD3CCAwUwAAaqMYPPEIACCjDKABDAkHe7eb50yEsBKtCAQxTkASgogbs5 EQqfPyADJXjACqAV4kCrjsQNlXVmQ3nQREcvLaeMB5iP7KxxiAMChDHAT/jDgQxk4CMEyIAFOAJ4 lsshUtfgSQcSYwEXgKIDGsiABHhSgAkIgLwOOPykAJ5jxWDauj2WbbOz7Om82a6sOHWHw4PKKHQo wAOBOEAFXgBywPDjBLq8Sl6+0HZK1R4GMhAIBwIQACsQQAWOksfJ+ad5VXLemGH/Ta3BEX/xFLn4 1Je9mHqBjjWU3wOEg8VVQAkoANBdwgHwxM/1Q+CdRl5QwwGogTjUHgEYQARUzwBgwAVcQAdMHvNt HbFtzlysWSulE/XB0+w82y/VmbTpFtshWTZAAARUAAYABPmlgAdsglgsQAQEYSA4QATASl5IAARE QAcc3QDUXuHFn7WgIAlGQM2BGKB1m9R82zYFoOc8gAX4C3OpmLlxSAMghdAYQDVIgBoKSZ2UnoDJ hQLsHAMYgAPOAAMgUUAkAhJNnb2ZQgH4IR+SwAgyAAPwhI7NwABo4M28QAXUAI4NANMRgAVUXgGE gtchmyeVT93gANIQ1vUtEqjl/wAGfEJ9ZMAnFIAHNEIBqMFcdN9oMcqx6J/4CESTxRLEXEYB7CKF rIEr/ltCDA5nDIbO/Z0jEMbFCBQN3pehzYFHHAAG9snLQQ8PRcACHMAfst4GWMAn0J0JoIEBYCB/ 2B7N+aAc5JH7+MYBWomsBEzWKJq+vAAtGgBPYAYyLp8JuKI6Ol0oMtXXnVANQpiQCOEFZGK5UFWF 5UAEREAFUEACOEBi0MC8EAAGNEAFTIL1hcXarVvbtRajmRe0bEctSU3a/VkJeIADVEAqlKDclRwB bIAQ3sDhNNNcneElJYAGSMAfJACAlFtCXQEGMIQRDsAOFGVkSAMrZJ2zyUEeMv9g6GgJlTBV0g1i VqJkwiAYUCBhdBiCBCTATnADDGyAAjSAGfyBh9nJKD7T9E1QAwxlR9YDwlUYb1DAJ3BDCSTARRjI H6zAz+XU9TUlGIZZf7SHE0nj2ghjY/aTS0oKpVxATHgEBiTGTrjfu4lDBSRGgAwQuMVaNUqGZehf R94BvLFma8Jb+d0aTy1hxsnBRkZGaWigSMbBBLhmb/rmbwJncArncBJncRrncSJnciqnckYGWmzi CrSmF4AB4IVcBL2SX21Tr0hRDpScByQABMBlG1gIuO1lAVxkAjQeBChCA+ScBQRmNbTdzx1ABc6B CT3FfeJnG6BEfvJnTZxIfwL/6EpQQVAkQBm4AVpOgAH42wN8YTlGoDRSGdjJi0XAwAQAH+VkxoId oN8xRFZAwBOwgT7ExA5AxA1U5SLETYqq6BONyIq66Iu2Q6TA6Iy+6HdsIizASAqUAHvaXQUOpYHu zGSVZkpdUYcAynlBm2HJhwPA5y8ygB0MSYBK6Uzt55RaaVn855VqqSwV6QtcQ9OxQcStU2GM1spB lsKxoYjtj9e0mlb8YR384WWUhjnRaJ2eUwPaaZ5mVIDQqZ76Kf9JD1+8YljEKQYFlUIuG66xB3Ig qQ7C4DxyzW5CREBtKX72DqVW6m+85RVlan8SgLJFqAzGl7ZM10+SCGWGac9o/+i5tamakp3J+Gms slk8yuqfmoA91qqt1lSLcWGQMiBdMgtEecyR7kaSjpO5GZccxACmdirVHA3yNKumiiazRmtKQN3o TVOOTo16mSr/0JlL6NSqsiliSeI9umOf5uqKtgr0pWud3ipZtKue2qioMRpfOWaZIqrYIZalMWqx OmrbrOnlSCq0VquzXiq1FiwNbSrBJmzG3FcwLY5WHqpp2hSqmkCGBiqrkiuP0MwaqEq8umtvxSXI 1ui7jizJuqieoBdckem9TiyRFlstklej3uCxKtg0qUVRNmyDwCPD7mxLWKfP/qxllSLZZevXLZzK dStRoWmKuaobDhAMqWnL5v/syaJs65SN1V7tE/Gp1m5tvoQdr2qi0Zph2KXWsSBJvxKMscoMsnrJ wCLs0EaJXMSt3OIAbNSt3X4qhYmaGQnpMC2t6FisSOII1IphuXZsVnzs16qoSrgK4zauyaIr5L4W 20Qty5JnmGma+QircRDr2v7rLAUsJymrztrt48Ajp54uVgRt3srttS7U5Worw21V4PpU07KV7Bgu cXHs+pSu11JuO2DP5Aavcvxn8bZO2J7SXnHg/uXr2SpqKrLpXj6q294a3K7uWW3YImVvCOFt957V w66s366b7ZKTdxCuuHpe8fTuHymubiDvnmaFA8XvX0lu/Q6S5W7fnFBthFL/I8xamvWFEvUCLKQm K8257s7OxZGAr0C1bgMTLbaCy+z+be1SbJkgkHeEa8aOK/tOLbjNKf7a74DJiQhDz/Ga8Gspb+wy r+Y+r7Ch7XioLReGrs26Tx2sRQI3LFswJgR7b1f6sECJb9+OavlesKENLsaK3gG2qu5SEaymcDdm XAlHsVjgahWTyq4ub+aaHrCKXeduxefScM227c3C1LIGccKRsNCubiPIaBobRtHSEj4irRFfjehh 3sVajvoalAdDV33OHxbjI1YKclagcCFDHcRirqJ1sdnCcPQe3NbQrMEBUtL2TQ7D8WX0MBwzwvdm cjoM8VqRb5iZb9eNoh7r/66iNnHhPvHiCnJYrAbxFu9YAK8Iqyy9plv/Nu/aeHG8gHFgiDGOkXEl D/BkoXEmL3Cv+rAbN4UOKzCgstME1zEpH/GsfY0G7zEHr6/U/vHvyvIsZ62lVLHkfjPyziuW8a+t 7LL3OLLaEEzMUuUafmsBWy8FYzIyb2+9BHEnA/En760E0zEr8lYp40oeo3LhqvLGPm0rw+8rr+sO pTAtlzM4azELczGM9fLu/PIlBLNFDXPxFPOGHDMnpy73NjAzs3H3wm40B/SYUvMdZzBdbPASa6wf txgg13L8CsQyFjI5I3IjrLAHtXAjr/Op0WMkT+88i64Bvy1pTKo/53NK6//twjrzDoey7BbxS4tb EquqNvcxN7Nyy7kyFqtELPf0/f70LaOzn+iyC8sx7Gz0YQ6wUtvwGhqz6ZL0s+rzMj/wJ7/AWysy BctluEXTNct0NtN0B4N1fHgzIj+0OEexT6d1UC9y6AWVdq5fDE/GDAszJYN0NWEvMg+vVL8uVfs1 CVy1G43ykRH0BZ1y+nq1SIFPWFvGWI+zyEJ2RKO1Y+svzubyRf/qW79MXAOZPLMtMdu1SON1Gifz XkMwSld1wq509bX05XJrNRMY7pIbYpdwTS92eTX2WfcOFUd210508J6zdf82I2N0O3PQvqatJPvr R0PNDYd2XpukMj+3afv/9T/HrmpnNWtjd5lwdSozsUI7sVg3NFk/9nl/rUT/dFZUtFAD92VntDvH tQAbdw2XcUhD6XLvc0mr7kn3tT9DM3WLat8MtolZ2TwflIF792wz9rny9hrnNDgfck9Tdr0OdXsX dS1B8nvIN+jSd8Ug1H0zd1RHd7Pys3Pvc2ofrUBf94kVOEIfuE1nTm0v+G1nhVk7dNdGuFqrdzo/ sVsDMJIU9yTjSF0DzYcvOZP3rJODL3Sf9nTXK4CruB23uHajMowrtoyDN4339PzOEoPn+Cvv+Hpb Nr66d/fAtwwP+Rh7dn2DtlOT9uuO9ptnapNfut5CuTRL+cRSuUHDdmJv/zOg54rHbnl557ODby2E p3VvMxwZlnkjn3nUdHS5gs1ntzkga/qmx3mnK3CJizZgj+80CzhMG7ZRcreRnzoT3XR4O/R457YJ S7ZjJzqZL3p2vrA7P/pmR3pnr3mHV7qQPDU+k8AmJ7kn+/OntzSfS+hWk7oSd/efQ3uWH4Rts7qY xaZug3msT3hlU/f/hte5gUquE/BSW69vj3SSjza6v3F/n/idR7lLJ/ue/+uLW3mM33ugV62rv7pe V7stm3eYZztbq7Nb/7jOxDVne/SkO3ukWvqvVyoPr22Iszsyu3uKC9lAD/jYVDkfy3bHp/r7gvzV ljV5+/sVO3TA83iFM//6rQcJwtM1ufd66dL8lja3sO8wsXPyxJNtde9v2Sp7WBTAJzD70yY0lnt8 Yt74LBO60lt7yU+2Ij89ewf3ysOZAqhgFryDy+u6VPG6wM68iV+qnKs0f7c734pygPv8jM3mDERA JHaanz+7uCcuEK26brf6Wf87bzu9og+80go3gZAJFtreHlD9cQ8+6SIwVIt81l8pnUu8sRNxnmt1 YbtjCWxh5Vv+V6N63kg7g1P721Puteu43Sv6UVOj3lsV0cRfHwB+wrM54Zs713d9ut88X+c8J+88 TWc82a/Nx6K+HMyCJMgC/EDq0GP+VipuLEBD/Ms/LQSDNFDC/ON//N//gjLgAgg04kiW5omm6slw A/HGxCzHgwzf9Q33tQ/8CYPEoY3DKSqNS5hCAltAgI6H9QHRXB+LXu7l3dlo4BzQG1Rs1+y2+w2P y+f0uv2Oz9cdRd6PZjZz1sRUSHg4gGS4GDSEgJERUSCkU3Chgxlo5ocGxvMFKEaJSVpqeoqaqrrK 2ur6Chsr+0oU6sMJ6se4i4iY6MLL2KfTZFkm6PnpeTumyYljeyw4TV1tfY2drb3N3e39DR4urj1a e4sM2BusvqTIvl62OGBM6jz2UtGB81kAoZCQAQOESRUOZBKlw4CWUwYoFCDwAAOGBAMa8JmFaQEH iqcSVBgAQd8NCQsw/2JMsIEBqgQWCkTAoABThksDLiAweeOByFMMIAxAsNNmKiIzKfUruSBgg58S DBCD9+7dr6jwni2xVC3ZMh8NoMQo0OXGkwUSbvQkkGDCtD/U+imYYcDKQwIRSkJYOmCCSgsGxiE7 EOHAND40PIiFksOFX3EDDES4KagBsg0EIJSUIBnGg4sDKC8e8OQYYRgaboT0pCGbECs1FjhNO8BB hJw+HYyGiludu9yUzC2iV+/TphipKzCAcYECjwkI+MbIMA8CR6ulDlRo8HGCCOUIIjgtDQYDaOU4 GzyI8HGATh0R8FJAUOH6AAZqccJ68qACjAY7NxOIeQN4A3QAXwUFVP+B0wQelZUXMANUUBIM+uSA ICpBEFgBAk5skAABCnaGiWEHNEUdVSYa8UuJuQ1ziDFZkbHVCxpoAFhMClAgiHjOwSAeREsJQsEG Qg7pyQEdQHDABk6BuMBsBJTWg3iJSBNOAxwscIAFjW0QAwY9TMCBAV3dwCWVi2mjQAcNHCBeAdDN UEFfYCgJhgcFXWCAdWZ6A6YBTTam2ACG8SDSDPCV4cCQQwJhp3UFHEABBRRBB2JhN1Ag2ImaLrLb pk1E0wdwT8VzDwXA1EUAAsrNoOOSBEj5AF4WxuDBBDcY5gAHGv4JYngvODiLkQ7cQCmXPMLgAIEE XAKDsfa1QoAHPlX/KuWDBhFQgAU+zAiSSnpixJ+GsE0Jg2E5THjDt7OSBt4FbOYVU49llvvCeyp6 yttUvPkiDFbUaBWNvY5RBGmUA/CVQwaaZTaDAgw8DLEfZSqgZbMDNEmaDFIm4dcA3zLgFWU3eFnR sK/GIPKZ30i5AHkKw1BQY4/ZAB4EKhmg3zjzPYDsRUnc6kcHPsA3zQEQQ7ztDQhM4MHDF0xKJhlC D2AvvlbX0Om+9wzyG03BxeNDApLQBeChL4gHslnTxopJTxC8/XYMEQzLwGw8MzlbtzBgdgOwskSg EhY6OOvlwANgpsBNzj67Ct8O+MSjDgUVIAFFBBjw8GzdHYBkerK4/0QR333TagO6BKg7QAJww01D 3T8FhgUEMA3w5uMv2E61YFpffYsiu+/TCCMu/gsjEAZMgIFQMGSwQRcEWJS6RAMxNReMB6El/QwN SKQS6DNENNELJO3ZDQMS/ThABB5o+ZO76XlwgSQWcKQyN6BJxJlOPTZnAAcSXVCQmC1gAxhYgAUg Mw7wxQQGFvCAkxKwqgp4oCwMROAXSpGqCmBgAgbRwYfMY5bkSWZnk+Dd72CQNRN2ghDz8NqokLED dAjnMMd4wbiUoQQYLiN9EVrLwZZkEhnK0Fw1DBTjhrJCUlVqLemw2AVdEYhm+IBSMHxSPaxBDFDB ADYrtM0Jv5iYn/+pUAyI8BcTQXGGp9gCWQCywUd8uIQsCmECk3iKAxb4mU3k4gYV8wMd0VA/bLzQ BjW4gB51MYAekU81tVAjYO4hJR9iEBENiJAMHjnGq6VQa0MAlRBE9cJozPCQ0EDk9XojxE4OYxZh WOEhSXnEU6AjjcxYI8BYicoYxvCC19gFisD4xRSBkUWGGN4Z1ajEVu4Qh9JgAi8LUaI8PkMXWoRG IHtJza2R6hxWYUwj/wDOGpqiFznM5O82qUJPNgKUUpymDHVZRULeSzivDGfwZKHMWVIHIbHMRDqA R0hbhkKeUMwlN8/BSyz6kpjmPJG+GorMHJpRn8ws3g4HelEmdtL/n9DUos5gGUVaLvKag3wlGbgJ vHBsFJxpFOckhaFKYGoyUFeLKSHY2c5aDvSgJyVoHDXaiHwSNBb5/GdvhtrPUYoUjSnlJ7QMqs0o ZvFF8mCoTPPlO95ZVQnGpChb1CjSigI1nPc6qDW9Oc1msHSkgSxpN0lpUpV+c6nJkGRwDlHOq+IL ncP0BTvtgVCzlhIhP41nDveJyzWG4ahPTKpSAcrUVqIUFn0QZVATmpWFlkOvWBUjZ+fpg4kaNaNg BahYU9nSikIVkHJNa0ghe01BZjOu7sQFW7E4V8jWVYdXhKlvIHoivjr0t4XAqTN0KthOEBZFY+Xp KBLLtZ4K1rH+/ywqGWl5T1qsdp/W66UvtspZqWT1hOAlQldHyzXbKvO06tSKM6N6W0a6VrWKjW1m tflVXbIFHCul60l5e8pP2TS8uBEuef3qQmpKd5S1NexdUbng3DIDnxldbFCRmlR9ClWsy2wsKyp7 YYRW91+aDR5wcfPQz/bLkMSL7C0FKkfWvjfGzDUHWslI30HYl8T4TS9KJctfCV90t9bjKF4HfOJ3 GJgqSDaCcRmMxuRu06c1bq9uPaxdxdYVntS9onV12tQJZ3mXXJYqPZvL3M0mORjC1KqamXDexeYX tgHVsYAjalob37iWOT7rji1a5gVHFa0t9a8msEzOJq8ZEUveXf97b/HXGe5Syg4O8KTrWWinFlTL EU5rl8FGVw7vlMKXLbMypkri77550fJAwolB+xUWH5PD6l1mhR+d0I7qOcjzHXJ9/wxos1Zaj6zt Rn+vfGhZJpq4rGY0TX+n6E8mWMEmHjWxYTnPGlbW1zgpqoW5/OnHbpi0oiTqdnOJajRv28QEZvJ4 rVbeH8T5xckkN42Jt9KywvdM+FXrUoEtSbgO9sd+NraQq+nSBwuY2e0ORqM99WgbRHrKx22woPEc WEzv47nm5nQ9Nd1PDQ9Z1JMds4iFfeozO/inq264L1xNYFjPQLRytmWtMfrrGdOXzHbmNY593fM/ uzW/BG/iN47/LdT/Fvne72V4swvxcDY7XdrjhPJUe0xxhV86zZ4MYoW3PN1Pi7zcAs3upnkOX/d6 t6otf3of3u3otsubWS2OqEVhzN476xvT0vx5NYst9Nm+tbb7PfrB5wpgjG906m4XQtQ1FfEcTHzY 1sYFtnXd6UyLmbJf7zTIYzn2aofZlGc/edq7q1BVs7vxcYQ5RGXewhe5+O5hvbXeuW16wHuj36/1 NsD3KGxBEzu++NY80OmpbN9+lfVQfza+oh2EJ4OtzpS+eLbVfXMMbzq6H9+8Y0N/3dFjeRUgNrXa ccv21bvcl3CHuNyBMO+71xvvttd506PZMZD2Wff2HbqP71F4/7t3ePaUeLCnTpG3fkHweCuCYBgk aYGFdZWmeMlmCB8HXaXked6XYf80bmUHgJxXaih3fpmlejjGfG/nWeYkc9gia15lc3Q2e9iHeroW gIbXa39HfJ8heEQHgEBmg8aHcHZlZBUIfQloBAtYgkl0FdOWU9QXgdaHeSzXdRjhbWDXb2LHgSNH bmb3VCF4ephVfB31fkbYCO23L/EGf3Q3a3P2Zfcmg8/USHyXfzcYhznYMTv4f8MRdPYzgIVWgLyQ Vyd4hM4nUwjYQg6YddMHT1BYWJm3cVy4fRjYfdoHellIdtj1gSbnb184YnCUfiZIhtDkeipWRi2I XqnVhnlnf/8RB3QfRYdr9Xs6JHDKVXT8J19AiHhLt3N1GF2hSAhI+IlK6GRMWHFR9oSX14hSuEqk xn3cRYlHBH5gJlmfNxTnVmrphlpcB4qC2DvA4Gbqx1Vq6IKDBYNuKEQNICcTdlhy6Io/FwG8GIvA N2gMcC09WHB8aE/IhnyHo3XruHy+2HztZoiTJ3yVN3BUlgPvoWOgZYHMKIkDACW/hIVt+AUS8BZr 9YyyZI1kJkeK4Yghto270AAZkAFuYjLANIoquGKy54altV715wMfoo4s5FF7FlDE8Smx6H/7YJGM ZYuC1IePKEM/s4uwCFDq0xeGqAHeCEwpYkJFGFrEaHUMtoj/yBgDMmlNXLeMHRdWzhJ2XRaNNtCT vJhYaNd9e+SNCKhxfqA+HgA/CbBAhQAe5mSGkDeGPRB/uaBc5aiKX6IhouCPqtSOZjWXsKWTeIgD Y1mBrYWLBOgFRgSINtWWbumWVhCXQUAWF5FJwBgVA8kB8QGaoSmao0mapWmapLkBAHSaq8marema odkBrymbszmbGqCatImbuTmasambq6kBlAmcHqABHfIDUlAABKISY5SSV2WAeXIAzgmdByCd0fmc 0jmd11md2Wmd1MmdFOAa2Gmd2cmd2Dme4kme56md2gmdG2Ce7Vme74me5Zmeznme2uGe8Ymf96mf 8OmeYRKe//wJoNMpAcHpltIZDQjAAUuxPg/RlJwphv4lhh+ohwdhjxQ6oZfyl0N1oRuaTRV6oYj0 BRHpoR3KoSN6k6OSTYppoiXKoiTqooRElC/aooTUlkggKyrigCZUlyvCWL4FZDFyTBx4ckDGHEAa ZtMopECKpFUoCHO5pEoKpUkqpBTZAz0ZpU8qpViqpVtBAGm5pVlaBg1gAewjDJZ4Qg7KDlJRoWs6 ojXXoVSToRe2ojJKp/pFSKkxSHOqpx8qZTFgkfK4p3U6ox8KmYP6ov34XHr5Rcs5RuuQpUsKphCY pDIZh19qqVHKpagBalfKqZGqhJh4OHh0qZ7aqZcqRqTqqf/CWE6qykloqo1JF6HDwaYt2lMfqJCC Z6iB2qYouji56qtvOot+oKK/qqvESi55aqw3yUK4ek5MCW89emRTqqSoikM/Wq0sNarZ2nmKiqra Kq0wZm3eKq6lmkzdeqVNVKaw6imuumy+tKYfuqvBBqLcKqj1Oqeyum3Faq/4inWbpa//OqNqt6/A OoGAWbDBlYLMmaaQOq1YmlOt1BAUkJSVSq7maolooCp/Oa4W+6P5BCnECQMQgCMcW7EbSwAMEqTi yqo2Nn01xa7QintpJqFveq8cahMHYEjMCrADKwYFQAEAIqfEmqvwdUAS2wMGMCg7q7QcOqC3pLQg Kg/Mulf/zhp3IBmtHeuDnXqtNFAogqKPJAu2ZXAWBcCgIWWypSpUO0E42FK2Zwu2SFopm/q26IpX Zmo1Lxut7sqnNMuhbjoG6OK1R7W09SqrDBApFxCRgCq0dRpozcEDBYS4w8Kzi3uv84KsPKus0AS1 Opqwjbqw09qwmHpctzA19EKxb1uxXFoB7gIBd+NKJQu7QhQEYsOgCrAB3vEYGua24xo1rzu3LetM dBtMeGtqammis0qnteoDgDsokzi493oDBoABBpG0BPe8eysEIwJEEjAFS3O9k0uwlgu+mUivq6Rx m7KjJrJuPpqpU/qlW/sCXUtEf7e7WgsX7GMumIi6qepr/yQjCD0JQdgau7vbA165v4AEvKsas5pC vAuntwRLvi7qt7dwszQhcN+7q0cwMggQGtZLuSUKTx5wAAiAAGzSEzJyABw0vh/sov1TjysMtbCH osrZuU35ud+atVL6sDXQEHECg/UbqTtUHyJLQUc6wGgLUJESKR+BAGERKXh0xAcMpA5AAfWhuwO8 svuVwK1KiJuyeJo1sxHcphPKr6cHw4E6WUF7xiC8lsyETBhsrM+0xhTqrvumNekLFet7te2bww5r pEZlt0D8vpJqxFKMw1+clYIcxRdLwFm8kMbLDg18f/yCvbIar/IoYv3KwtCbqPq1yWxsx2H8yXMs yuObuf9xtLmLWsNPecNYy6UOO7oEuIWLnLo1KcCGzLDq6sq4TMuH/LvZyLLA3Fk2bJQ0CcGWTKtk rGA6O8qczGceTMplnK/qCMemrH9Pe8oSeb68gcedCbMLt8sIHMR/bGFJp8hBzGmFfM52S84eyMvd yqQmK7w5qa77Isn+SMnHbEp967TXeMHNzM+dDM3V3GCefLkETbnPm83me7AFtsrB1Mp8/MqiK25C OcvvDLe2rL/r3LLr6LscfcAEvMXBDMns18X5QpbGXMrylMyIuWWCC9ASPF8DHdNSu4OEV9MBe80J vdCdfFXd7Kjf3HThrG1+fLG7dXwYLbq9CNK57NGJ3Mv/Iu1xizzPwVvPDHzS3/jAKy3HyiyvmfzP 0SzTAo3Qh4pylSzWGKzQ5evTP/3QNRXRdNvHf1zR5XzRTY1s9BvV53ploKvUGC3VajlLjXrP0SR1 +szSyavMamXGZR2BeObY0gzTiZ3TmLvTptzT97TNCGuAynfWQy3RRqe15IzUev3XVHq6Ta3Lt6bO e82/Uz23jpzIm5nV5MVm78q3Mv3VjB3WkZ12zujbBW29wb3Ja93QcuzWrxbXH13UdC23Fu3OeG3O pq3afe3L0q2yUS3b4lzSL1fbTJbSsRrDyKzYLq28Bu3b+kfTaR3K2Lbewc17Z5zKqGzH6Eu17me1 RHjd/82tw6T9X0mN3YZ5y9V9gKwd4K/djLE90lrc3YxQ2OGNymid2PY4wRzZ25VtfsCN4Yoqs4qb 1sUN4sdNxzSs3IDo1BOtw7Hsh3ft2hkdzK0N2NZN1KdN1dq94I/c4CxU2F+salxtoRK82FLlvBte 0Br+4eM92XB45Loa39jM1prd2bpx32co1E8t1yhu1F9mtgPe4v6dwAfOzoy80V2O4A+p4MKM4zL1 4MWsuRLe1biKybyN00serEpO5DO7lpJN3JYt309usFG+C4xKzOR04qKd4nVd2mNO49Od2mT+qYvH 3Iue3SF947NN2N9dFRDe4Ug+4X0b5Kc25HRe5JPt2L/t7WnvfedNztN+Ts1uDegO/NlWHulXnIX+ veWKDtKdB+OCvNr1teuOHtpyq7Lbzd9gtOYQGuGI/eaD5lZCPufpjVikjuHFq+yi/q/GLcPz3awl Tuh+Pddm+tx2Hd3ADq7a9uu4jOwzDuZITOlobukNiulSoenTzOnLTsaf/tJqDO0huec2fYWobu2q jtms3uko6QFIgPAJr/ALz/AN7/APD/ERL/ETT/EVb/EXj/EZr/Ebz/Ed7/EfD/Ia7wEhAAA7 ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/EquEqu3.gif R0lGODlhTwA/AIAAAP///wAAACH5BAEAAAAALAAAAABPAD8AAAL/hI+py+0Po5y00jCDNjj39YFV +HwdWTKosgKbe5hYa3KZ+8bxnLTwT8qxdLbIKxRc0YpBR6240+Se0CpiSeX4qL6eNSkabni6LfEX lULVVbKXNXueeMls6XhlnqwpURc9kqfC1ydYaNE0BGixwyjB5vTnOElZaXmJmam5ydk5KalF2CCk OBh4I2oa5jS6t+ZWCmoDeTb2ZuraOGp499WjtAt0q7ooBWmXWCp2Fhqc+oYCppxni7Q4XMcmlwsD DBJHNNd9hfdY7ioufDFo9skMjTgtv84bjkmaadzryd/v/w8woMCBu2gZudDljyw3st4dGuasWQ07 OPg0jBNNojx0umvCeINQjhm3dxzRYFmlRV/HerBImlwJhxira9KUgSNDsdk0YyHT1cQGTs9IQDlV 4Mli7ZlDmoYaxmzT9BHIqJSSJr3mrp4jfMUAOrX0laDYsWTLmj07lWtEkApnSlU6by1ElLq4PM0o 1aAeXx6hKvq4Dy+TeSVFtfzCs9ZOpsv8Po37ly7XjNW06oTIM5ddcnQrTkkp+KW5q0QFXZx7Nawu x+reEit6MJHVfHO3Asa6SXVVtLx7+z5bAAA7AA== ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/EquEqu4.gif R0lGODlhcAAhAIAAAP///wAAACH5BAEAAAAALAAAAABwACEAAALqhI+py+0Po5y02ouzCkFL7oVh B5DiQprnCoElm7gqTKNvfXQzzpecW/sBe7Af0UjsgXasZVJpYK5ST57ueKsGpU2u9gu+DL22sHlG ZqQjMiv1g4zmroh21vOuT+UTdIyZpyI0SBiXl7NRqAh06CMUA6mnlrXWcuc4lEHXFzmnJmgx5nNZ majnNPeI2PkiJUoRqLNTKmmyVArIF7fKF/pEO7lRJtmLkjt1jBfsAPowu6v8lwkLTMyJSoNUbVbH uO1s982NLd5AfsnNSVleZssetrl5Ij+dDrdar+lnz1/x3l/lH8AkAgcaBFgAADsA ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/EquEqu5.gif R0lGODlhxwAbAIAAAP///wAAACH5BAEAAAAALAAAAADHABsAAAL/hI+py+0Po5y02jtDwLz7D4ai s43miaaqVK7uC8dUK9f2rdL4zvezDwwKEbqh8fjSFJHMpmvpjEKgDCoJZJVqE5pKVrH5TrfkR/eH 9uhK4irX0Ha/AfHFGm4K4+njiPL7F9h1x4dBWAeWWGg4h2i2x9ZH92cXcnfmRYmHmalENGmoyceZ ITrpGQaY0dGyRgon5tr2unjgaRfLRQuGyLY7d0rraLvYmlopCfoL/El0jPxo+xy9OpgVN9y8p6i9 vdro/V1ImLat90GOTczsXbTkex7O0jh4AV87TGO8LF7Mgkmu260rzs7k87eJH7RUBu2NK5jtUyQ1 CCVGBMdIXh6NIvNqnZiIbp0zj2VKlgFpMuWWeCpbOvHlMqbMmTRr2rzpoAAAOwA= ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/EquEqu6a.gif R0lGODlhsQA1AIAAAP///wAAACH5BAEAAAAALAAAAACxADUAAAL/hI+py+0Po5y02ouz3rz7G4TB p4kjeZhopK7L6ZYxHLN1QgMimEM7PsOFJD/WENELppaWZAOWc3JoUB/zUb3edEjtRPrygmXXMddg PqvXN6qXSMm+PW601X5fpzt1NvwrpoTnpyDnYLg31TUY18hIyLcIKZmGuKVlCKjJlljRZ5bJYHnJ eeRpatTT6ZiCeuj6GkU6OSsqWFs4u6p7iytJl7RLKmzjm4sSbFy8QkzS/BSmjNWr/Gx7LA3tYh2J HJ19zQz+2A00/u09zo39ez5Xnr2OBCufLq7OK7SRSN9b5MPP1S5YedqdYlWm3qdN0xhBAYUhWQaC 2hadCHbxzyB+/xrrZBT1j+E7G51U4XHysWCoig31nDz0woTMIxKbkIMJpI9FIS1c3gzX0o1OcyDQ xZoZkqWdoUsZrgSK0yXTkYWmWit5LGWXIVRkYqJKNOjOSRzVqKKoEaAsLihHoA2r4y1PIgKbKlXp DptchNIeRq0Kt54zasbKAu0p+ENisMOMwES7GN5gfFPc3nUXmVa+fT819yXsa51WuHkzZ+ZblC3U 0qBxcbso5TSZe+BkG8TcupZtMXtjnjK5bW6qL3Ubl0ndkTQdSnkqfTW+EfmytbTNNp9+O/hxm5uo 27Mu9jrj5ds9sfI+OXr49Z7JqzffXTm8p8zFd/5O/6/9+7PBRzN17tBmaPRWVUn9aNfKHkk9Udwl u0mXXjwC5tUehNXosmBhGVZGoDMbUghiiCKOSCI4BQAAOwA= ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/EquEqu6b.gif R0lGODlhsgA1AIAAAP///wAAACH5BAEAAAAALAAAAACyADUAAAL/hI+py+0Po5y02ouz3rz7HITB p4kjeZhopK7M6ZYxHLO1QhuhJVY7Pkv0WENIUXcTLnLG1OTEZHpoMCnw6cwmkVcslxINaq2IVvML IK+k6qXWWxZ/28pzOr5Fv216O379R/fnUDWYxOaz92AleEGlSMh3BylnaNc4mdk3FQgm+ZinqfPz REpkutmRc9RgZoSKyREbKvox63ILQuuJu/uyhugriZJL3NslHHmcTLkRzNxayVy86AYdvQxNrVx3 bQ3ovY3d7U1OIq6a3XyN/hsOHFaOfF7eLrGKynOfbz8/elrKVK58fgphINhlVYp++O6tGxNIUDFQ tUp9qgNlScZh/xXddfTIZeMLVg4hOvrYCY9IjCVHIewWS+GkNmxM2PxBcWAqmEooqhRi841BbjF7 WjraMpPEm0GJGoU0AlPOS3Cc+PTXyufQk1R/VowatUxTTVs9Sr2yEqu7siQTAWTJCGzSNC+BFoVb jddOdgtt1evLDYfMh9OkJbsL0kw/euoO74v0crHfxsLs7SAjmRNlX5Z3Zk63eVfnj59lGa4MOuw3 eYQP/jVNdxzrvTLehSrt7DRnWvhutfVDW5fYRr81Dt4yFc4sfpXKfpMolPfqi2DigZvTNS9Z6cPd ogRi3ZjJRXVTBp+s1qyX8Iyxa4eOBrdaxFLHfhfu3mn2++jNvTjX559m+Y0D33a3DedbeSCdx9VC xCnoYIC62XadNtzNxiCAfN1WnGgdlvAhLiFiSGKJJp6I4i4FAAA7AA== ------=_NextPart_000_0034_01C7CF33.C2E07480 Content-Type: image/gif Content-Transfer-Encoding: base64 Content-Location: http://www.acm.inf.ethz.ch/ProblemSetArchive/B_EU_SWERC/1995/EquEqu7.gif R0lGODlhsAFFAIAAAP///wAAACH5BAEAAAAALAAAAACwAUUAAAL/hI+py+0Po5y02ouz3rz7D4bi SJbmiabqyrZkELjyTNf2jYvwGTPx3vgBexKgwajoIQFEYpEDazqThyZl6sAGo0mnslutLJlWLhjh LZrR6aWWnLBG1mz0MRi2L6LjyVu+x5T3RiWYV/h1aDg3xUeot0iYppjVyFcI8RdJecfpo/VzB9g5 6RlHGSrauapXuojHKggoCfkK6ZrpYyo7KFb76/oY17gbuBusdhpr+zlGvPwqbNo2DeyHyYqrnJ0b +8ysqE0q3YwphHgIqiv6nQ4HTfXcl210vi07ypw6qH59tFamnb5hSC4Zyueu4L1aBm0FXIfPk5eC AMM4e7dpz7wN/1K8rUIIbiI3hvukJaqyEZqSk/QyovK2cSKdcNt2CMTyDZlLktEWvmRYp9+/ne5G ptuH0iUocs0cDemlbBZBha3uyUNl0OnQSjMT4az6saFWjBDnWCO1UGY9mlAHgg3bFRtRlh7nXhqV c9lJkCIzXEULmGhdXqo+9hJXtq/cwhG54dLEqZ0jY4ORDv7Zs21ewph/OTTMuShSoXhrhsx8+pav eGZK/gPpsDUX12SevmNqFJ6UIbLB2vacO3hT4KkArl1M52ttuF4RClVZu7nacbrZiCtO+ze4xd0u Ut6O+wHi7xw7jA8vHvgT5LAuKPeZ3j35+fEtPC82Xj2eR+8je//o3555AhL3wXH2zcMUeijdZ597 CIKg4HL0BbiddVekpFGEDmr4H4aZcOhXDiKOSKJZOlRYYooqrshiiziA6GKMMs5IY40mwGhjjjru yKOOOPYIZJBCDunCj0QeiWSSSl5RgodLPglllCUaWdYpKe11YR26aGciFE6utxVlUqnhTBsCYYRe mW0NYw6ZSy14hmpkxtnYMdVk+OWEsO2UoHCgocjmgnkq1VAy6ukEaDVl+Jmfllb++Zafpj16UFRW dUlNYecRKCZ8VRbVaTHfQSbYFnKuBikjniJKTqGXXaffqqeS1yingaUVK6ifsTWqnmGK4V2dCfEF kT28JhraSln/dDFJTPHY4Qa0Y4IplmnRemYJRb8Ze6mB1VmHZa/e6lVPRapdNC54g/pzW020wdcX oomyNNOEkWD411bBvJttsLu2dJNcpR2VWlL5kMrrfTb5d6pkQYHhnEZ+OdXamqAdXGi+uam122wm uUodV+Vm9eqf4T32U8CCTosaXW7N4upzEVtKj7lzpYyOXrRqkG+4ye7M2LuodeMWd7c+GCpZmaY6 2aVvfQFg1McuOunPtgJVmUXYVt0zY9BujY3QREv7FNVcYsXbwnJUzC4xCttM1qGC7qpsqczCSjIc KxFL0NbKdsyPzuxZuXB0gRcMJ3R5F36Qy8gqWLfcd0JxdXn//12u355ji/qtfPCi2iCu7ILOOYoM Gr0sf4PnOvpllmPOEYCp+oF06AeezuSG9tZ3IcK2e2oh7WmuOzGV4hEv8YBSLu/jCJYxD3300qtg /PTWX499k9lvz333NFTvffjij1/v+Oafjz6FEIKffvvuf3/jfrQEe3L1Pxq3Zbr1OXvt7FuoabFf De1DdBICqXADMm0Br1avSV6p2DYNkLVOV1/7F7Iq9RrkaStPLNOa/z4hN3pVjXcVFIwIWRe3oD0Q hQe7l6QsWCxKaWNtkhsgCSl4LBvur3QF5CHWKGU3B4Lnhx+cisDs1Bn1eYRv8PjUZpp4pjYR8T0n RISG6vWQs/+wQyIxTGEumkWLvm1RM2ArIbf+xS3NmcNmZzQMVUiyQTISjmFhg1sWpVXGBs6tJ2/s YOJC0JGhWWKFdYwQvfAFi21BSmouFOTDdNU0pxGsP4wrGp9opg+xDVGLIsHJaMI2tUeaTCIcohgE 6TIzjCXHUf/boE2EEUnfPA2OI5tN1iKlRkleTHT7OuVZUhmOmB2RbjmrmSJD2TIcRgNEXbONVGB1 LtS1RzELbCQGbQiZ3cjRMniRIMq8lhFugjI4PvOg4HzitsME4kylkJc4R1lHHyquN+w4ztlgwqXn 7TAptJJNJfdWOX5ox4DNUebdCATQDIYMcRKCjoTW5jiF4an/oBDlYvAE97c/MhByAtzkBT+6udfx LHPK+2gulSi7G4IpoCj81LxU2qXJjROm+1nWTG1a0pxiIIpGiqIUb+fSCTLCdzQ9HlFzByzcVelj SQVWDcrnIC+xL0Pvq+pKCwRSq2p1q/Djqle/KqWpgnWsZO1qWc+KVhuJNa1sbSvsdLBWt8r1fWsN 48RYyRpdxpRn5VoHA28hiWO6KU5tfBMRCRioW2FyqJ60CGmE18P+MatCf5DgVYMJ1WJS9powrAS4 TqbMFhrqW35UImGKg05yqupZRTzpzcqZwy6qsIrWCqpo95ow0Nl1gAhsp+cc2llT3am0eLqpT3mL 21sm7bK+/73pNLWow00ctXE79Rd1fTVGTirNLGDEqUa3m11LzvaJQSwWBB3z2Ddidjpu/Mo9EZY3 nekvW3tEYwppaLTMjvSi9ImXLv/ZHf4G9bowwyYmB5rbz/Yqh5UEWB4HNkmIAVd0wmGczCi4r6JF VIhJpVhLWvlNKi6WYytr4936UUXaRlIrqEzw6JobKWKut5ybUQ4qhfnfYvbLZ+Tl7C65k9KrZniY nAkXDY/7U5kC0UDvlFwgF4m2PujkmZNqsovtqw4mPthvV+ugkQu24dWBNskMzYodDXddkM5MYP78 ZORwtzdx+pKxfjOXcZyp5YaeJqPUOSo7FRoy38HNsXiOjW3jLpimju52v02UJul2SlKRapjRpUv0 b1na6JAi+Yq7w8+A8Zoe1XV6tJkuNe1yqlSkXrmpjv4dZEctTzECb9b/+3RIeVg/yCGv1SjAkX4L tOu5Lo99+hS2sY8d12MrG9nJXraznw3taEsbAwUAADsA ------=_NextPart_000_0034_01C7CF33.C2E07480--