
GCPC 2013

15.06.2013

The Problem Set

No Title
A Boggle
B Booking

C Kastenlauf
D No Trees But Flowers
E Peg Solitaire
F Ringworld
G The King of the North
H Ticket Draw
I Timing
J Triangles

Good luck and have fun!

hosted by sponsored by

These problem texts are copyright by the jury.
They are licensed under the Creative Commons Attribution-Share
Alike license version 3.0; The complete license text can be found at:
http://creativecommons.org/licenses/by-sa/3.0/legalcode

2

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Problem A
Boggle

I am sure, you are a big fan of the board game “Boggle”. Don’t worry if you are not familiar with
the rules, I will explain them to you. A Boggle is a 4 × 4 grid of letters where your job is to find
as many words as you can. If I play Boggle with (or against) my wife, she always wins – the loser
(that’s me) then always has to do all these little jobs like to take out the trash. So, please help me
to win again.
Words in a Boggle can be constructed from adjacent letters (i.e. horizontally, vertically and diag-
onally), but the same dice may only be used once in a word. The words have to be listed in our
dictionary to be valid.
Words with 3 or 4 letters count 1 point, words with 5 letters 2 points, 6 letters 3 points, 7 letters
5 points. 8 letter words will give 11 points. If you find more than one word (and I hope you do),
points will be summed up to form your score.

Input

There is only one test case per file. The first line contains the number of words w in the dictionary
(1 < w < 300 000). Then follow w lines, each containing one word. Words consist of up to 8 upper
case letters (’A’-’Z’). After the dictionary specification, there is a blank line. Then follows the number
of Boggle boards b in one line (1 < b < 30). Each boggle is given as a 4× 4 grid of upper case letters
in four lines. Boggles are separated by blank lines.

Output

For each boggle, print one line containing the maximal possible score, the longest word and number
of found words. Words that are twice (or more often) in one Boggle, only count once. If there is
more than one longest word, print the lexicographically smallest one. You may safely assume that
there is at least one valid word in each Boggle.

Sample Input Sample Output
5
ICPC
ACM
CONTEST
GCPC
PROGRAMM

3
ACMA
APCA
TOGI
NEST

PCMM
RXAI
ORCN
GPCG

ICPC
GCPC
ICPC
GCPC

8 CONTEST 4
14 PROGRAMM 4
2 GCPC 2

3

This page is intentionally left (almost) blank.

4

Problem B
Booking

Pierre is in great trouble today! He is responsible for managing the bookings for the ACM (Acco-
modation with Moderate Costs) hotel and has just realized that the booking software has a severe
bug. It has created overlapping and wrong room assignments. Pierre is now worried that the hotel
might be overbooked. Since the software manufacturer is neither very responsive nor competent, he
must check this himself, so that he can timely take countermeasures if necessary.
Fortunately, Pierre was able to export all original bookings (including reservation codes plus correct
and valid dates of arrival and departure). The only information that got lost is the time of the booking
placements, so that Pierre cannot retrieve any booking priorities (e.g., first-come-first-serve). Using
the available information, could you please help Pierre out and tell him a room assignment with the
minimum number of rooms that satisfies all bookings? Please be aware that a room must always be
cleaned before reuse. Since Pierre does not want to take any risks, he tells you to only consider the
maximum cleaning time.

Input

The input consists of several lines. The first line contains 1 ≤ T ≤ 100, the number of test cases.
Each test case starts with a line containing two integers 1 ≤ B ≤ 5 000, the number of bookings, and
0 ≤ C ≤ 360, the cleaning time (in minutes) for one room.
Then follow B lines, each containing the reservation code (a random alphanumeric string of up 20
characters) and the dates of arrival and departure of one booking. Dates are given as strings in the
format "YYYY-MM-DD HH:MM" (see example test case), where reservations are only for the years
2013 until 2016.

Output

For each test case, print the minimum number of needed rooms on a single line without any additional
blanks. Be aware of leap years but ignore daylight saving time.

Sample Input Sample Output
4
2 120
1 2013-07-01 15:59 2013-07-08 16:30
2 2013-07-08 17:30 2013-07-15 12:00
3 60
65 2013-07-08 14:30 2013-07-08 16:00
32 2013-07-01 16:00 2013-07-15 12:00
91 2013-07-01 16:00 2013-07-08 15:00
2 360
a7 2016-02-21 14:00 2016-02-28 21:00
xx 2016-03-01 01:00 2016-03-02 12:57
2 60
a9 2016-02-21 14:00 2016-02-28 11:00
a8 2016-02-28 12:00 2016-03-11 21:00

2
3
1
1

5

This page is intentionally left (almost) blank.

6

Problem C
Kastenlauf

Once every year, Jo and his friends want to visit the local fair in Erlangen, called Bergkirchweih.
This year, they want to make a Kastenlauf (box run). They start at Jo’s home, and have one box
(Kasten) of beer (with twenty bottles). As they are very thirsty, they drink one bottle of beer every
50 metres.
As the way from Jo’s home to the Bergkirchweih is pretty long, they need more beer than they have
initially. Fortunately, there are stores selling beer on the way. When they visit a store, they can
drop their empty bottles and buy new bottles, but their total number of full bottles will not be more
than twenty (because they are too lazy to carry more than one full box).
You are given the coordinates of the stores, of Jo’s home and of the location of the Bergkirchweih.
Write a program to determine whether Jo and his friends can happily reach the Bergkirchweih, or
whether they will run out of beer on the way.

Input

Input starts with one line containing the number of test cases t (t ≤ 50).
Each test case starts with one line, containing the number n of stores selling beer (with 0 ≤ n ≤ 100).
The next n + 2 lines cointain (in this order) the location of Jo’s home, of the stores, and of the
Bergkirchweih. The location is given with two integer coordinates x and y, (both in meters, −32768 ≤
x, y ≤ 32767).
As Erlangen is a rectangularly laid out city, the distance between two locations is the difference of
the first coordinate plus the difference of the second coordinate (also called Manhattan-Metric).

Output

For each test case print one line, containing either “happy” (if Jo and his friends can happily reach
the Bergkirchweih), or “sad” (if they will run out of beer on the way).

Sample Input
Sample Output2

2
0 0
1000 0
1000 1000
2000 1000
2
0 0
1000 0
2000 1000
2000 2000

happy
sad

9

This page is intentionally left (almost) blank.

10

Problem D
No Trees But Flowers

Tom and Sarah soon have their second anniversary and he wants to buy her something special. Even
though she’s very keen on any kind of tree, he thinks that this probably is too big of a gift. So, he
decides to buy her flowers. But not the lame cut off ones that will die after two weeks tops. No,
he wants to buy her flowers that may last forever. Flowers in a flower pot. Now, he has a problem.
Finding the right flowers for his girlfriend isn’t that difficult. However, finding the right flower pot
turns out to be much more complicated. Since he wants the flowers to live as long as possible, he
needs to find the best-fitting flower pot he can find. When he comes to the Arboreal and Crops
Market, he notices that for each bouquet of flowers there is an optimal size written for the flower
pot. However, the offered flower pots do not state their volume. The only information the shop
assistant can provide is the outline of each flower pot given as a function. Since Tom was never
very good in math and his date is in less than an hour, he asks a nearby customer for help: You.
Fortunately, you brought your laptop on your shopping tour. Can you help Tom?

The outline of a flower pot is described by a function f(x) = a · e−x2

+ b ·
√
x, where x is the

vertical distance from the bottom of the flower pot. The body of the flower pot thus is defined by
the rotational body created when rotating the graph of f around the x-axis. The height of a flower
pot is denoted by h.
The volumes of two flower pots differ at least by 10−4. Also there is only one flower pot closer to
the optimal than any other one, with an accuracy to 10−4.

Input

The input always contains one test case which consists of several lines.
The first line contains a decimal number 0 < V ≤ 105, the optimal size for Tom’s favorite flower,
and an integer 0 < N ≤ 5, the number of flower pots available.
The next N lines each contain three decimal numbers describing the corresponding kth flower pot:
0 ≤ ak ≤ 10, 0 ≤ bk ≤ 10, and 1 ≤ hk ≤ 10.
For the sample input the volumes are approximately 34.72348 and 21.77966.

Output

Print one line containing a single integer that describes the index of the best fitting flower pot. The
index of the first flower pot is 0.

Sample Input Sample Output
25.0 2
1.0 2.0 2.0
2.0 1.0 2.0

1

11

This page is intentionally left (almost) blank.

12

Problem E
Peg Solitaire

The game of peg solitaire, popular at the court of the French king Louis XIV, has the following
rules. Given a two-dimensional board with a mesh of holes, each hole can contain one peg (pin).
The only legal move of a peg is a vertical or horizontal jump over an adjacent peg into the empty
hole next to the jumped peg in line with it, which is then removed. The original goal of the game
was to leave a single peg in the predefined position on the board by performing only legal moves.
Obviously, such a solution is possible only for certain board forms and starting configurations. To
drop this restriction, we slightly redefine the problem: Given the starting configuration of the board,
determine the minimum number of pegs that can be achieved by means of legal moves as well as the
minimum number of moves required to reach that number of pegs.

Input

The first line of the input contains one number, 1 ≤ N ≤ 100 which represents the number of test
cases. Each test case is described by the following lines of input that represent the initial state of
the solitaire board.
In this representation ’.’ denotes an empty hole and ’o’ a hole with a peg in it. ’#’ indicates a part of
the board without a hole. All boards have the same shape, see sample input (that includes position
of holes). In its initial state, the board can contain at most 8 pegs. There is an empty line between
two consecutive test cases.

Output

For each test case your program should output a line with two numbers separated by a single
whitespace, with the first one denoting the minimum number of pegs achievable by legal moves
starting with the given initial state, and the second one providing the minimum required number of
moves.

Sample Input
Sample Output3

###...###
..oo.....
.....oo..
.........
###...###

###...###
..oo.o...
...o.oo..
...oo....
###...###

###o..###
.o.oo....
o.o......
.o.o.....
###...###

1 3
1 7
1 7

13

This page is intentionally left (almost) blank.

14

Problem F
Ringworld

The world is actually neither a disc or a sphere. It is a ring! There are m cities there, conveniently
called 0, 1, 2, . . . ,m−1, and arranged on the ring in the natural order: first 0, then 1, then 2, ..., then
m−1, and then again 0 (as the world is a ring, remember?). You are given a collection of contiguous
ranges of cities. Each of them starts at some city x, and contains also cities x+1, x+2, ..., y− 1, y,
for some city y. Note that the range can wrap around, for instance if m = 5, then [3, 4, 0] is a valid
range, and so are [1], [2, 3, 4], or even [3, 4, 0, 1, 2]. Your task is to choose a single city inside each
range so that no city is chosen twice for two different ranges.

Input

The input consists of several lines. The first line contains 1 ≤ T ≤ 20, the number of test cases.
Each test case consists of a number of lines. The first line contains two integers 1 ≤ m ≤ 109 and
1 ≤ n ≤ 105 denoting the number of cities and the number of requests, respectively. The next n
lines define the ranges: the i-th row contains two integers 0 ≤ xi, yi < m describing the i-th range
[xi, xi + 1 mod m, . . . , yi].

Output

For each test case, output one line containing YES if it is possible to assign a unique city to each
request, and NO otherwise.

Sample Input
Sample Output4

3 3
0 1
1 2
2 0
200000 3
100000 100000
100001 100001
100000 100001
6 6
0 1
1 2
2 3
3 4
4 5
5 0
6 6
0 0
1 2
2 3
4 4
4 5
5 0

YES
NO
YES
NO

15

This page is intentionally left (almost) blank.

16

Problem G
The King of the North

Winter is coming (or going? who can be sure these days) and a new king rises in the North. The
message travels quickly these days... That is why you, the rising king, have not much time left. You
need to rally your bannermen behind you. But one question seems harder to answer than you would
have first expected. How large of a kingdom can you claim and how many men should you send for?
Your advisors have taken a close look at the potential kingdom and have determined how many of
your bannermen would be required to fully defend any part of the map against your foes. As you
are a loving and caring king, you want to minimize the number of men that have to serve in your
army. To give your war council a fair chance of figuring out the best kingdom to defend, you have
to determine the size of the army that you will raise as soon as possible.
Luckily, armies are not that advanced yet. You will only have to defend against armies moving
horizontally or vertically (an army cannot pass but your bannermen diagonally). Your kingdom
counts as defended, if there is not a single way to reach your castle, starting anywhere outside of
the map, without passing to a fully defended area. Squares on the map labeled 0 represent high
mountains, or walls, no one would ever be foolish enough to climb. You can assume to be save from
invasion without sending any bannermen to defend them. Since you are uncertain about what lurks
behind the wall (or in our case the borders of the map), you have to assume the worst and plans as
if you would never be able to hold any position outside of the given map.

Figure 2 – Illustration of the sample input — the kingdom can be defended with a minimal army of 37
bannerman, located at the cross-marked positions. The kingdom itself is illustrated using a tiling
pattern. Note that you do not have to find out about the kingdom, or the position of you bannermen.
These questions are to be figured out by your war council.

Input

The input is given in the form of the (rectangular) strategic map which your advisors came up with.
Every square in map is assigned a number of bannermen which would be required to defend the
position against any potential army. The map is formatted as follows: In a first line you are given
to integers R and C, 3 ≤ R,C ≤ 300, specifying the dimensions of the map. This line is followed by
R lines, each containing C integers 0 ≤ ci ≤ 100 000, the number of bannermen necessary to defend
each square. Finally, you are given 0 < r < R− 1 and 0 < c < C − 1, the position of your own castle
on the map.

Output

Output an integer on a single line, the smallest possible army you would require to defend any
kingdom.

17

Sample Input Sample Output
7 8
42 42 0 0 0 0 0 16
42 11 14 42 42 42 10 16
42 0 42 42 42 42 0 16
42 0 42 42 42 42 0 42
42 0 42 42 42 42 0 42
42 11 42 42 42 5 5 42
42 42 0 0 0 42 42 42
3 4

37

18

Problem H
Ticket Draw

The concert promoters of the Bon Jovi Tour 2013 have decided to sell tickets for the concerts in lotter-
ies. The rules are quite simple. For every concert, fans can apply online for tickets. In response they
receive unique reservation numbers. It is important that for each concert the numbers distributed
online are consecutive nonnegative integers starting with 0. Unfortunately, as the organizers tried to
draw reservation numbers randomly, they discovered that the pseudo random generator they used is
extremely slow. To minimize the number of calls to the generator, they invented a peculiar but fair
enough way to distribute tickets.
As soon as the reservation for a concert is finished, the organizers ascertain the number of submissions
M and draw one random integer Z from {0, . . . ,M−1} (remember, fans get integers from 0 toM−1).
Integer Z is the only object the organizers have to draw randomly! Finally, to complete the selection
rules the organizers determine an integer r > 0 which has a direct impact on the number of selected
tickets.
Now, using Z and r, tickets are selected deterministically as follows. For the reservation numbers
0, . . . ,M − 1 and the number Z, their decimal representations of length n are considered, where n is
the length of the representation of M − 1 without leading zeros. Thus, the decimal representations
of the remaining numbers are padded on the left with leading zeros, if needed. If z1 . . . zn denotes
such a representation for Z, then the holder of a number a1 . . . an gets the ticket if and only if the
strings z1 . . . zn and a1 . . . an have a common contiguous substring of length r or more which starts
at the same position. Speaking formally, he or she gets the ticket if there exists an index i, with
1 ≤ i ≤ n− r + 1, such that zi . . . zi+r−1 = ai . . . ai+r−1. For example, if Z = 56743 and r = 3 then
a fan with a reservation number 06740 gets a ticket, but a fan having 56143 does not.
Your task is to help the organizers to estimate, for given numbers M , Z and r, the exact number of
tickets selected in such a way.

Input

The first line contains the number of concerts C, with 1 ≤ C ≤ 5000. Then follow C lines, each
containing three integers M,Z, and r, with 0 < M ≤ 1018, 0 ≤ Z ≤ M − 1 and r ≥ 1. You may
safely assume that r is smaller or equal to the length of the decimal representation of M − 1.

Output

For each concert, print one line containing the number of tickets selected during the ticket draw.

Sample Input
Sample Output8

89 32 1
67 49 1
67 45 2
1000 23 1
1000 401 2
1000 54 2
3571 2 3
3571 976 3

18
15
1
271
19
19
13
12

19

This page is intentionally left (almost) blank.

20

Problem I
Timing

A clash of galaxies is coming!
A galaxy ruled by the mysterious MdI is trying to annex our milky way, but the galactical government
has plans to turn things round.
Our intelligence agency has infiltrated the enemy’s headquarter and gained surprising intelligence.
The enemy is moving its units around according to a fixed scheme: for each fort a fraction of the
units is moved to other forts in each time unit (the time of the flight is negligible).
Now the government has fixed a time when to attack. Your order is to compute the weak points. But
as the enemy’s galaxy is far, far away it takes one time unit to fly there. Furthermore, we are also
certain that the MdI will recognize our target and immediately start all ships which can reach our
attacking point (via one link, regardless of its direction). The spy informed you that these strengths
are only statistical values, i.e. some sort of indicator as float.

Input

The first line of the input contains the number of test cases (1 ≤ T ≤ 10). Each test case starts with
one line containing three integers stating the number of enemy forts N (1 ≤ N ≤ 100), the number
of links l (0 ≤ l ≤ (N − 1)2) and the time from now when to attack t (0 ≤ t ≤ 5000). The second
line contains N doubles ui (0 ≤ ui ≤ 1000) specifying the strength of the stationed troops at each
fort followed by l lines containing the links. Each link is described by two integers sj (0 ≤ sj < N),
tj (0 ≤ tj < N) describing the source and the target of the link and one double pj (0 < pj ≤ 1), the
fraction of units transferred from sj to tj in each time unit.

Output

Print the lowest indicator of the enemy galaxy with an absolute or relative error less than 10−6.

(Sample Input and Output are provided on the next page.)

21

Sample Input Sample Output
3
4 3 1
100 200 10 305
0 1 0.25
1 2 0.1
2 0 0.75
4 3 1
100 200 10 312
0 1 0.25
1 2 0.1
2 0 0.75
4 4 5
100 200 300 400
0 1 0.2
1 2 0.2
2 3 0.3
3 0 0.2

305.000000000
310.000000000
659.879000000

100

10

200

305

0.25
0.75

0.1

0.9

0.75

0.25 1

82.5

22.5

205

305

0.25
0.75

0.1

0.9

0.75

0.25 1

Figure 3 – The statistical strengths of the first sample before and after the first time step.

82.5

22.5

205

305

0.25
0.75

0.1

0.9

0.75

0.25 1

310

310

310

305

Figure 4 – Strength of the forces to face at each fort. Note that links are used in both directions.

22

Problem J
Triangles

You got a very strange gift for your birthday: two triangles in the three-dimensional space. Each
triangle consists of three infinitely thin segments, and each segment stays straight no matter how
hard you press it. Now, you actually wanted to get just one triangle, so you try to move the triangles
far apart from each other, possibly after rotating one or both of them, so that you can throw away
one of them. Is it possible? Or are they tangled?

Input

The input consists of several lines. The first line contains 1 ≤ T ≤ 1000, the number of test cases.
Each test case consists of two lines. The first line contains 9 integers x1, y1, z1, x2, y2, z2, x3, y3, z3 ∈
[−1000, 1000] denoting the vertices of the first triangle. The second line contains another 9 inte-
gers x′1, y′1, z′1, x′2, y′2, z′2, x′3, y′3, z′3 ∈ [−1000, 1000] denoting the vertices of the second triangle. Both
triangles will be non-degenerate, which means that the corresponding triples of points will not be
colinear. Moreover, it is guaranteed that no pair of segments from two different triangles intersects,
and there is no common plane containing both triangles at once.

Output

For each test case, output one line containing YES if the triangles are tangled, and NO if it is possible
to move them very far apart from each other.

Sample Input
Sample Output2

0 0 0 10 0 0 0 10 0
1 1 10 1 1 -10 10 10 0
0 0 0 10 0 0 0 10 0
11 0 0 0 11 0 11 11 1

YES
NO

23

This page is intentionally left (almost) blank.

24

