> /1.q bjbjt+t+AA] j$s
gbZ
2?
9^JR RECTANGLES (Latvia)
INCLUDEPICTURE C:\\!BOI\\PAV.PCX \* MERGEFORMAT
Fig. 1
Let ABCD be a rectangle with the following vertices: A(0; 0), B(0; 1), C(k; 1), D(k; 0). Let us say that this rectangle has index 1. The proportion of the lengths of the edges is 1 : k, see Fig. 1.
The second rectangle (with index 2) is built on the "North" edge of the first rectangle (BC) with the same proportion of the lengths of the edges (1:k). This rectangle is BEFC. |BC|: |BE| = 1:k.
The "West" edge of the common rectangle AEFD is AE.
The third rectangle is built on this edge AE with the same proportion of the lengths of the edges (1:k). This rectangle is AGHE. |AE|:|AG| = 1:k.
In the same way next rectangles are built on the edges of the previous common rectangles with the same proportion of the edges and sequence of directions of the base edge ("South", "East", "North", "West", "South", ...).
Write a program that finds out for the given whole numbers k, x, y (12=>9 H@8DB 0170F0 x
HJC
LOSV\^_`ajkopst}~
#$-/349=?@EFHILNSUYZ\]`afgpvz{~()+,12459:>BFGJKOP[\^_bcjkmnqrw}~
!$%*+./78:;EFHILMQRVY^bfjosw{ #$&'*,-0169;<>?BCGHJKMNQRXZ`aefhiklstvwz{
"&'-.2356=>@ADKO[efjknovx z|nickC:\temp\1227.doc@P@GTimes New Roman5Symbol3&ArialWTimesLTTimes New Roman[
!_CourierTimes New Roman"qhJxƪJx
!20 RECTANGLES (Latvia)nicknickOh+'0|
8D
P\dlt RECTANGLES (Latvia)8RECnickANGickickNormal.dot nickl.d1ckMicrosoft Word 8.0)@@8^@8^՜.+,D՜.+,Lhp
Inferno-204
1 RECTANGLES (Latvia) 6>
_PID_GUIDAN{373AC515-CA2B-11D7-975B-00C128008336}
!"#$%'()*+,-0Root Entry F*
9^
9^2Data
1TableWordDocumentSummaryInformation(DocumentSummaryInformation8&CompObjjObjectPool
9^
9^
F Microsoft Word
MSWordDocWord.Document.89q